Population Subdivision and Selection Migration Interaction*

S. KARLIN

INTRODUCTION

Environmental and/or geographical variation in selection
patterns and its coupling with gene flow are considered vital
ingredients in speciation and differentiation. Recent liter-
ature has witnessed increasing emphasis on the formulation and
analysis of a hierarchy of models with aim to understand in
more precise terms the interaction between spatial and temporal
selection variation and population structure.

In the case of finite populations, numerous authors inves-
tigated the effects of some forms of population subdivision

and migration patterns without selection, with respect to rates

of allelic substitution, rates of approach to homozygosity and
correlations in gene frequency maintained by linear external
pressures. Notable contributors in this vein include Wright
(1943) ; Malécot (1948), (1951), (1959), (1967); Moran (1962);
Kimura and Weiss (1964); Karlin (1968, Chap.2); Bodmer and
Cavalli-Sforza (1968); Maruyama (1970), (1972); and others. A
number of special deterministic migration models coupled with
local differential viability forces were set forth by Levene
(1953), Prout (1968), J. Maynard Smith (1970), Strobeck (1974),
Christiansen (1974), Deakin (1966), (1968) among others. We

have cited theoretical analysis, but needless to say, there is
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voluminous descriptive and taxonometric studies relevant to
the above theme.

Several concepts and measures concerning environmental
heterogeneity and the degree of migration mixing in relation
to the existence of "protected polymorphisms" will be examined
in this work. We will report a number of general findings
pertaining to a geographical population genetics structure in-

volving almost no restrictions on the parameters of the model.

1. A MULTI DEME POPULATION MODEL SUBJECT TO
MIGRATION AND SELECTION FORCES

A population is distributed over a finite region generally
composed of separate breeding demes (e.g., geographical or eco-
logical habitats or niches) Ql, P Peeoy pn . Successive gene-
rations in the population are discrete and non-overlapping. It
is assumed throughout this work that each subpopulation P:i
is of large size so that the effects of genetic drift are in-
consequential. We focus principally on a trait with two
possible alleles labelled A and a . The action of selection,
migration and mating can be coupled in a variety of forms. A
number of the concepts and structures pertinent here are now
highlighted and refined.

(i) Spatial selection gradients

We assume that viability selection operates independently
in each deme. The transformation of gene frequency under local
selection in deme 9 5 is determined by the relation

E-f(0 (1.n"
such that if £ is the A-frequency in f)i then after the

*
For a multi allele system the transformation would be des-

cribed by a vector function Ei(g) where § is the vector

allelic frequency state in locality 'P i -
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action of natural selection, the resulting A-frequency is §& .
Generally, fi(E) is continuous and monotone increasing.
Also, we stipulate throughout this work that fi(O) = 0 and
fi(l) = 1 signifying that selection forces maintain a pure
population composition. Thus, in this formulation mutation
events are ignored, i.e., new mutant forms arising in the time
frame under consideration cannot be established.

An important choice for fi(x) arising from the classical
diploid one-locus two-allele viability model has the form

(l+0i)x2 + x(1-x)
f. (x) = (1.2)
1 140, x°+s, (1-x) °
1 1

where the viability parameters of the genotypes are as listed
AA Aa aa

1+0., 1 1+s., .
i i

In the corresponding haploid situation, we would take fi(x) =
0,.X
i

—_— I 1 1 —
Oix+si(l—x) t is generally unnecessary to spell out expli

citly the mating system operating in each deme (locality) as
the consequences of mating and selection are implicitly cou-
pled and summarized by the local selection functions fi(x) .
The choice (1.2) for fi(x) would, of course, come about from
local random mating with standard viability selection in a
diploid setting. Other determinations for fi(x) can be ge-
nerated by superimposing forms of frequency dependent selec-
tion, or selection induced on a single locus when part of a
multi locus system or other combined mating and selection
forms.

The environmental or geographical selection gradient 1; is

characterized by the array € = {fl(x),...,fn(x)}

The extent of environmental heterogeneity is reflected by
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the differences existing among the components of f; . Where
all fi(x) are identical then unambiguously we speak of a
homogeneous environmental selection background. It is still
largely unknown how to relate spatial and temporal ecological
parameters and selection gradients. Our investigation is
mainly in terms of fitness values and we concentrate on achie-
ving qualitative conclusions for different forms of fitness
arrays. Specifically, our discussion focuses on concepts in-
volving comparisons of degrees and quality of environmental
fitness heterogeneity interrelated with the migration struc-
ture.

A general tenet commonly stated is that environmental va-
riability or heterogeneity in the selection gradient is sub-
stantially correlated with the proliferation of polymorphism
and this is claimed to be the case largely independent of the
rate of migration. There are some who contest this as a uni-
versal dictum. The above theme is too general and several
terms need clarification. By what criteria is a prescribed
environmental selection gradient considered more "hetero-
geneous" or "variable" than another environmental selection
form? What are meaningful means for measuring degrees of va-
riability in both ecological and genetic (fitness) terms? The
appropriate concepts must take proper account of the migration
structure coupled to the spatial selection gradient. We add-

ress these questions in Section 2.

(ii) Local relative population sizes

We assume that the individual demes have a characteristic
population size at an appropriate stage. Various possibili-
ties have been proposed of which we indicate two :

(a) The relative numbers of offspring contributed from deme
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n
i to the total population is Ci , (ci >0, z c. = 1)

constant over successive generations.

(b) The relative size c; reflects the proportion among the
whole adult population located in deme fz after

migration.

The c;, can be construed as a constant expression of
"interdeme selection" not altered by the specific genetic com-

position or local selection forces.

(iii) Hard and soft selection

In a multi deme population there are two principal opposite
models relating the interaction between selection and local
population size, those of hard and soft selection; this dis-
tinction was introduced by Wallace (1968). See also Dempster
(1955) .

Soft selection stipulates that local viability selection
does not change the relative proportions of the deme popula-
tions in passing from the offspring to the adult stage. This
is the most commonly applied model where each subpopulation
carries a constant characteristic fraction of adult indivi-
duals in every generation. On the other extreme, hard selec-
tion stipulates that each local population after mating in-
cludes a characteristic fraction, independent of the generation
time, of the total population. With the operation of selec-
tion at deme x)i we postulate the existence of Wi(xi), a
function of the A-gene frequency, xi , such that Ciwi(xi)
measures the relative population size resulting from the eff-
ects of local differential selection. This conversion can be
viewed as a local density regulating factor in the process.

For the choice of (1.2) a common determination has wi(X) =
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. . . . 2
the mean fitness function in t)i , viz., Wi(x)=l+oix +si(l—x)2

where x 1is the A-gene frequency.

(iv) Migration structure

A basic ingredient in the migration pattern is the pres-

cription of the forward migration matrix

r = H“inn (1.3)

i,j=1
where ”ij is the a-priori probability per generation that an
individual of deme i will migrate to deme j . Of course

H.. > 0 and

i3 u.. =1 , i=1,2,...,n .

1 M

I~

J
It is worthwhile to highlight a number of old and new exam-

ples of relevant migration patterns.

(a) Levene Population Sub-Division Model. In the early

literature, two main dispersal and migration patterns were
considered. The Island Model introduced by S. Wright divides
the population into panmictic units each receiving an equal
proportion of the total population. The Levene population
subdivision model (1953) slightly generalizes the Wright model:
a population after mating at random distributes itself into n
separate patches, a fraction cy going into the i-th patch.
Then selection occurs according to the state of the environ-
ment in each patch. Notice after migration the subpopulations
involve the same mixture of the whole population for each ge-
neration. (It has been suggested that this formulation may be
appropriate for a species whose numbers are regulated within
each of the separate patches but not on the whole population.)
For this case

M.. = c., 1independent of i . (1.4)
1] J
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(b) Stepping Stone Mode. A second class of classical

migration patterns are based on the principle of isolation by
distance where the degree of migration diminishes with the
"distance" from a given deme. An extreme, widely applied case

is the stepping stone mode. Here the demes occur in an or-

dered (linear) series. In each generation, a fraction m
(m £ %) of each deme is exchanged with each contiguous deme

as depicted.

A Vi B Pn (1.5)
e - -

The stepping stone mode of migration including two and higher
dimensional versions has been widely used in the study of

geographical genetic models without selection by Malécot

[1948], [1951], [1959]; Kimura and Weiss [1964]; Fleming and
su [1974]; Maruyama [1972], and others.

(c) Non-homogeneous Stepping Stone Mode. Implicit in

the stepping stone mode of migration with a constant rate m
is the assumption that the demes have essentially equal sizes.
Where the relative sizes of the demes differ then the rates

of gene flow between neighboring demes are generally not equal
or they may have intrinsic unequal rates of migration in reci-
procal directions. In this setting the appropriate analog of
(1.5) involves general non-constant local migration parameters

o, , ui such that

M, . = U, ’ H

i=2,3,...,n-1
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We will refer to the migration pattern (1.6) as a "Non-
homogeneous stepping stone migration mode".

Other specifications of migration rates depending on dis-
tance were considered by Malécot [1959], for models with no
differential selection and in practical contexts by Jain and '
Bradshaw [1966].

As noted by Wright himself [1943], the island model is
rather unlikely to be realized in nature whereas the isolation
by distance model is more realistic and likely to be interes-

ting.

(d) Circulant Model. If the demes occur in a circular

pattern rather than linear (like around the base of a central
mountain or along the shores of a lake), then the homogeneous

stepping stone migration mode has the pictorial form

U g
0 A\
U
0 "V !
n U

A general circulant isolation by distance migration matrix

has the form wu,, =a, ., .
ij [i-3]

(e) A Homogeneous Homing Model. An appealing extension

of the island model was put forth by Deakin [1966], [1968],
[1972] and studied further by Christiansen [1974]. The

migration matrix is
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1]

u, . ac. i 1 #£ 3
1] J

uy g l—oc+occi ; i, =1,...,n

(1.7)

The components in (c ,cn) constitute the usual rela-

17Cyr--
tive deme sizes while the parameter o can be regarded as

a measure of the dispersal rate of organisms in a local deme;
Maynard Smith [1970]. Other meaningful interpretations of «

are possible.

(f) Non-homogeneous Homing Model. We will develop in

Karlin [1976] a number of results for a migration pattern
generalizing (1.7) to the form

”ij = aicj ;1 # 3

U,, = l-a.,+a.c,
ii i i1

(1.8)

where the rate of homing differs over the respective demes.
Already certain results inferred by Christiansen [1974] on
the basis of the model (1.7) do not apply for (1.8) indicating
that the interactions of migration and selection are more re-

condite in the presence of a non-uniform homing rate.

(g) A Hybrid Island and Isolation by Distance Model.

Another migration pattern in the spirit of (1.8) amenable to

analysis has the form

o= l-a, i=1,2,...,
Hii % ! . ! n
n
a,c, , 1€isK , K+l<jgn ) c.=1, c.,>0
e j=K+1
Moo= J (1.9)
J K
a.d, , K+lgisn , 1s§sk ) d,=1 , d,>0
i3 ju1 ] 3

u.,. = 0 otherwise.
1]

Thus, the demes divide into two groupings, ﬁl = {Pl ,Pz P ’PK}

and ~g2 = {PK+1""’?n} such that an organism either does

625



S. KARLIN

not move or when migrating it passes from its group to the
other group with a fixed probability of relocation in a speci-
fied deme independent of its birthplace. This model and its
extensions to r groupings is developed in Karlin [1976].
These can be regarded as hybrid patterns of island and iso-

lation by distance models.

(h) Atoll Migration Pattern. Another migration scheme of

some interest has the form

R T 0...0
t-po , O M2
Ta= : (1.10)
I'/-‘—n-l , O...0 Moy
| ,» 0O...0 0]

The motivation conforms to the picture of a sequence of
islands resembling an atoll. There is a main central deme

Pl and subsequently smaller demes such that either immi-
gration from a specified deme occurs to the next deme on the
right or in the other direction immigration entails return

to the central deme. Other interpretations are also possible.
The analyses of this migration pattern is quite tractable even

allowing variable local homing rates.

(v) Backward Migration Matrices. 1In order to write the

appropriate transformation relations connecting gene fre-
quencies in successive generations and to take proper account
of a conglomeration of factors including variable deme sizes,
the effect of differential viability selection on deme size
and gene flow, the concept of the backward migration matrix

is indispensable. The elements of the backward migration
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matrix M = |‘mijll after selection and migration specify

m,. = the fraction in the i-th deme originating

ij (1.11)

from the j-th deme in a given generation.
We indicate the calculation of (1.11) for the model where
selection precedes migration and following Christiansen
[1974], we do this separately in the circumstances of soft
and hard selection. As pointed out in paragraph (iii) selec-

tion converts the relative population sizes into

*
c, —» C, = C,. (soft selection)
i i i

. c.W. (x.) (1.12)

ii7i .
c, —» ¢, = ———————— (hard selection)
i i n
z c W (x,)
k
k=1 k
i=1,2, ,n ,

where {Wi(x)} usually stand for the local fitness functions.
An elementary calculation involving conditional probabilities

gives

m,. = , i,j=1,...,n . (1.13)

*

kzl kM
It is important to emphasize that with hard selection the
backward migration matrix depends on the specific genic popu-
lation composition at hand while in the situation of soft
selection llm || is independent of the gene frequency
configuration. Equlvalently, in hard selection differential
viability directly influences the migration structure but not
with soft selection.

Where all demes are of equal size and T = ‘lu J|| is
symmetric (as in the homogeneous stepping stone model) then

for soft selection M =T showing in this case that the

backward and forward matrices coincide. In this case ”ij
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reflects the proportion of population exchange between demes

i and 3 .

(vi) The Influence of the Timing of Migration and Selec-

tion Forces. The discussion of paragraph (v) was predicated
on the operational order of the genetic forces in each gene-
ration being
(followed by)

mating and selection ———— % migration. (1.14)
Effectively, migration occurs at the adult stage but prior to
mating in the next generation.

Another formulation also relevant in the workings of cer-
tain natural populations would have the order of application
of selection and migration reversed; viz.,

migration e——s selection and mating. (1.15)

For the model of (1.15) the offspring (infant) rather than the
the adult population migrates (e.g., as in seed and pollen
dispersal) and subsequently differential viability is in
force.

Selection generally has two major components reflecting
fertility and viability effects so that for some natural
populations, either model (1.14) or (1.15), or a mixed model
involving possibly two stages of migration, may be appro-
priate.

The inherent differences to the timing of migration and
selection effects are well contrasted by writing out the
transformation equations relating gene frequencies in two

successive generations.

(vii) Transformation Equations of the Frequency States.

Let X, denote the frequency of type A in deme Pi at the
start of a generation and xi the frequency for the next

generation. Consider first the model of (1.14). The stan-
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dard global transformation equations connecting x =

] .
(xl,...,xn) to x' = (Xl,...,xé) over two successive
generations is given by

n
x: = 2 m, . f.(x.) ' i=1,2,...,n (1.16)
i j=1 133 3

where ‘Imij‘l is the backward migration matrix computed as
in (1.13). Recall that in the hard selection model m, .
also depends on the frequency state x

Where the timing of migration and selection operate in
reverse order as in (1.15), the transformation equations read

as

n
x, = £, () m.x,) , i=1,2,...,n. (1.17)
i i 521 ij 3J

For the problem concerning the existence of a protected poly-
morphism the models (1.16) and (1.17) are equivalent, see
Bulmer [1972]. Pertaining to the characterization of the
actual established equilibria, the timing has a significant

influence, e.g., see Karlin and Richter-Dyn [1976].

2. OBJECTIVES, COMPARISONS AND SOME RESULTS
FOR SELECTION MIGRATION INTERACTIONS

In the previous section a number of the key concepts and
structures underlying a broad class of multi deme population
models of n demes subject to local selection forces and
migration flow were delineated. The main factors are the
following:

(I) The environmental selection gradient described by the
collection of local selection functions

{fl(x),...,fn(x)} (2.1)

obeying the conditions of paragraph (i), Section 1.
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(IT) The migration pattern characterized by the parameters
of the forward and backward migration matrices, respectively

T = ||uij[| , M= |]mij|| (see (1.3) and (1.11)). (2.2)

(ITI) The relative deme sizes given by the vector

c = (cl,c2,...,cn) rocy >0 , Zci =1 . (2.3)

In general terms, the desired objective is to evaluate
qualitatively and quantitatively the influence of the factors
(I), (ITI) and (III) separately and in combination on the
evolutionary dynamics and equilibrium behavior of a multi
deme population obeying the transformation law (1.16). We
will consider two categories of problems bearing on the exis-
tence of polymorphisms and variability in populations:

(a) In Section 3 quite precise conditions in terms of the
parameters (2.1), (2.2) and (2.,3) are set forth guaran-
teeing the persistence of the alleles A and/or a . The
property of persistence of allele A (not going ultimately
extinct) even when initially rare is now commonly called

protection of the A-allele or A-protection. This is inti-

mately connected to the ascertainment of the initial increase

of a new allele. These approaches helping in the study of

certain population genetics models is now quite classical and
widely used.

The maintenance of a protected polymorphism is more than
the existence of a "stable polymorphic equilibrium" since
fixation of any allele is precluded as a realizable event
frem any starting frequency state, assuming of course all
types are initially present (i.e., protection holds under all
initial conditions). With a protected polymorphism there may
be several stable equilibria states (this is already the case
even for the Levene population subdivision model) or con-

ceivably oscillatory behavior between several polymorphic
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states is induced.
In order to make quantitative comparisons we have intro-

duced (in Section 3) a number of measures of environmental

heterogeneity for relating alternative spatial selection
gradients. We will also propose two modes for classifying

intensity of migration mixing (and/or degrees of relative

isolation) among the breeding units. The implications for
"A-protection" of the interactive effects between selection
and migration forces are discussed in a variety of contexts

throughout this paper.

(b) A more difficult problem is the determination and

characterization of the possible stable polymorphic
states in the multi-deme framework. A description of the
qualitative dependence of all the stable equilibria on the
environmental components embodied in (2.1)-(2.3) would be of
relevance in the explication of variability in natural popu-
lations.

We have achieved such characterization in a number of
cline models with the results reported in a series of papers
by Karlin and Richter-Dyn [1976a,b,c]. Several of these
findings are discussed in the following paper (this volume).
We will also present in Karlin [1976] various characterizations
of the possible polymorphic states in the Levene subdivision

model and for some of its extensions.

A. Conditions for protected polymorphisms with general

environmental parameters

Consider a multi deme population system involving a general
migration structure, selection gradient and distribution of
deme sizes as prescribed in (2.1)-(2.3). Let M = ||mi.||
be the backward migration matrix constructed as in (1.13)

focusing on the soft selection model (an analysis of the hard
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selection formulation is contained in Karlin [1976]). The
familiar analytic criterion assuring protection of the A-
allele (e.g., see Bulmer [1972]) is the validity of the in-
equality

the spectral radius of MD = p(MD) > 1 (2.4)
where D 1is a diagonal matrix involving the values dizfi(O),

_ 1
(dl,d "dn) such that, di = s

o1t for the example

(1.2). Where p(MD) < 1 then A goes extinct when its
initial frequency is small. Therefore, apart from the non-
generic possibility p(MD) = 1 , the condition (2.4) is
necessary and sufficient for protection of the A-allele. The
inequality p(MD) > 1 assures protection of the A-allele but
information concerning the nature of the ultimate equilibrium
state is undetermined. However, it is suggestive that with
increasing p(MD) the more repellent the state 0 becomes,
concomitantly the established A-frequency is expected to be
more substantial in at least one deme.

We will now highlight two categories of sufficient condi-
tions of wide scope bearing on the existence of a protected
polymorphism. Actually we present the results in terms of
protection of the A-allele. An analogous condition pertains
to protection of allele a and these together imply the
existence of a protected polymorphism.

Let v = (vl,v2,...,vn) be the unique left eigenvector

corresponding to eigenvalue 1 for the backward migration

matrix M obeying the normalization

n n

) v.=1, v.=) vwm. , i=1,2,...,n. (2.5)
jop 1 i kel k Mki

The following result applies to any migration structure
and entails no limitations relating to the vicissitudes of

any special examples.
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A sufficient condition guaranteeing protection of the A-

allele is the validity of the inequality

V.

n 1 i
.H 1+s., >t (2.6)
i=1 i

Here, the influence of the migration pattern and distribution
of deme sizes is reflected by the components of the left

eigenvector v = (Vl,V ""Vn) of M.

P
Where the relative deme sizes are equal and population

exchanges among demes are such that M is symmetric (as in
the homogeneous stepping stone migration mode with equal deme
sizes) then v, = %-, i=1,2,...,n, and the condition (2.6)
reduces to
1/n

> 1 (2.7)

n
I
i=1

1
1+s.,
i

which is always satisfied if the aggregate selection coeffi-

cient of the aa-genotype

n
S = 2 S5 is non-positive.
i=1

The condition (2.6) applies to any migration structure.
It is a sharp inequality since for the particular circulant

permutation migration pattern, example (d) of Section 1, the

equality
n L 1/n
p(MD) = .H 1+s
=1
holds.
For ‘21 |si| small the inequality (2.7) is essentially
i=

equivalent to
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n 2
o S 1 1 S 2 1 S
> + = ( - + 5 ) > o where o = ) 'z (si n) (2.8)
n i=1
02 S
or — > — when S is small.
2 n

By restricting slightly the class of migration matrices,
we can achieve a substantial refinement of the result of
(2.6). More specifically, suppdse M is positive definite
(such is the case for the homogeneous stepping stone migration
pattern with equal deme sizes, provided the migration rate

m < %0 , then protection of the A-allele is assured provided

n
1 1
Pl 2.9
i=1 i
n
For Z ]si| sufficiently small, such that the cumulative
i=1

selection effects is of small magnitude, then the condition

(2.9) is essentially equivalent to

N
50

(2.10)

Thus a sufficient variance of the spatial selection coeffi-

cients can override even a slight cumulative aa-selection

advantage and protect the A-allele even when it is initially

rare.
Notice that (2.10) does not have the factor %— entering
into (2.8).
Suppose the backward migration matrix M admits the
representation
M = ElKE2 (2.11)

where El and E2 are positive diagonal matrices and K is

positive definite, then the analog of (2.9) is as follows:
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A sufficient condition for A-protection provided M has

the form (2.11) is

n V.
1
= i i 2.12
I 7= >1 , (x= (vy,...,v)) defined in (2.5)). (2.12)

i=1

Examples where (2.11) holds include among others:

(a) Levene population subdivision model

M= l‘eic'|In ' S= (l/l!"'ll) r S'_' (Clr--- n

i,j=1
(b) Most cases of the non-homogeneous stepping stone model.
(¢) The non-homogeneous homing model of (1.7).

The circulant migration pattern (example (d), Section 1),
does not admit the representation (2.11).

Elaborations and proofs of (2.6) and (2.12) are found in
Karlin [1976] and Friedland and Karlin [1975].

We proceed to a concrete application of (2.12) for the
homogeneous stepping stone migration mode (1.5) with deme
sizes described by the array c¢ = (cl,...,cn) . The cal-

culation (1.13) produces

(l-m)c, mc,
2 , 0. 0
mc, (I-2m)cp mcs
72 ~ )’z ~ 72 <
M= \\\ \\ \\ (2 13)
N MCh-2 ~ (I-2m)cn_|\\\ mcp )
%4 nd %q
mCp. (1-m)ep
" )

635



S. KARLIN

with
Yi = mci_l + (l—2m)ci+mci+l , 1 =2,...,n-1
and
- = + = - .
Yl (1 m)cl me, Y, me_ + (1 m)cn

A standard determination of the left eigenvector v for M
in (2.13) leads to
ciYi
v, = ———— , i=1,2,...,n .

Now for m g %— so that the rate of population exchange
between neighboring demes does not exceed 50% of their inhabi-
tants (a condition undoubtedly always satisfied in practice),
the matrix M possesses the representation (2.11). The cri-
terion of (2.12) then asserts protection of the A-allele sub-

ject to the inequality
1+s,
i

For extensions of this last example allowing unequal local

rates of gene flow, consult Karlin and Richter-Dyn [1975a].

B. A method of comparing environmental heterogeneity for

classes of selection gradients.

There is a tendency to measure diversity (or heterogeneity)
of an environment usually by a single index. Common choices
include the variance of selection values (or of an associated
ecological parameter), cumulative deviations of selection
values (absolute or relative), the inter quartile range of
selection values, information index (entropy) for a selection

gradient or other indices correlated with those above. A
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real valued index for measuring heterogeneity compels essen-
tially a single scaling over all environments. Intrinsically,
an environment is complex and should not and cannot be summa-
rized in a single value. It should also be evident that not
all environments are comparable. We now propose two concepts
for ascertaining that an environment é; is regarded more
heterogeneous than a second environment é;' .

Consider an environmental selection regime 65 charac-
terized by the local selection functions
{fl(x),fz(x),...,fn(x)} and suppose, for definiteness

2
X+0.X
1

£ (0 = 2
l+o0_x +s, (1-x%)
1 i

associated with the viability parameters
AA Aa aa

1+0, 1 l+4s., , 1 =1,2,...,n .
i i

In this model the environment is determined by the array of
selection coefficients

s = {s,,s

1

2,...,sn} and 0 = {01,0

2,...,on} . (2.14)

Definition 1. We say that the selection regime (s,0) is

more heterogeneous than the selection regime induced by the

parameters

'=ll ) '='| )

s (sl,s2,...,sn) and g (01/057-0.0) (2.15)
if s' 1is "an average" of s and ¢' 1is also "an average"
of o .

We make precise now the notion of "averaging" applied to

. n . .
vectors. A matrix A = Ilaijll is said to be doubly sto-

chastic if
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..,n . (2.16)

o
WV
(@]
IIo~>—3
I
Il o~ 3
[s1]
1]
’_l
'_l
[}
I
[
[\

(all the row and column sums are 1 )

.

The collection of all doubly stochastic matrices is denoted

by a

Now we stipulate
Definition
is an average of s <& provided there exists

a matrix A in @ such that

Sl

s' =As thatis s! = ) a,.s. ,i=1,2,...,n. (2.17)
- - 1 . 13 3J
j=1
The averaging operation preserves the aggregate selection
effects, viz.,
n

n
1
izl s; = izl s, =5 . (2.18)

Moreover, the relationship (2.17) tends to reduce the varia-

tion of the si values. 1In particular, the variance of the

s' vector is diminished:

§ (sl)2 N § (si)2
i=1 i=1
More generally, for any convex function, ¢(&) , we have
n , n
DEICHEES) d(s) . (2.19)

i=1 i=1
The relation (2.17) also entails the inequality

1/n 1/n

e . . . 1
The specific averaging matrix having ai =5 for
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all 1i,j converts s into the constant

(homogeneous) environmental selection pattern (2.20)
. S .
with si = o i=1,2,...,n .

To reiterate, we say, the environmental selection gradient

' . .
(s',0") = £ is more homogeneous than the environmental
selection gradient (s,0) = E if

s' 1is an average of s and ¢' 1is an average

of o in the sense of (2.17). (2.2

Formally, (2.21) is equivalent to the existence of A and B

in @ (not necessarily the same), such that

s' =As and ¢' = Bo . (2.22)

We can introduce greater flexibility in the concept (2.21)
by allowing the possibility that é; is more heterogeneous
than és' with respect to selection on the AA-genotype while

fa‘ is more heterogeneous than £ with reference to selec-
tion expressed at the aa-genotype. We will not pursue these
ramifications in this work.

With the specification (2.20) we find that for a prescribed
aggregate level of selection coefficients S and ¥ for the
aa and AA-genotypes, respectively, then the constant selec-
tion gradient characterized by the constant selection coeffi-
cients

S z .
Si =4 and oi =5 i=1,2,...,n

is more homogeneous than any other environmental gradient with

a selection array having the same cumulative selection effects

S and I .

The following guestion is natural.

How does increased heterogeneity of the environmental
selection gradient correlate with the realization of A and

a protection and the maintenance of polymorphism?
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Definition 1 provides a framework for dealing with this
problem. The averaging concept is appealing but appears to
be unnatural. It is not a correct fact that the existence of
a protected polymorphism is more likely in a more hetero-
geneous environment (taken in the sense of Definition 1). The
weakness is that Definition 1 refers only to selection gra-
dients and does not take account of the nature and inter-
action of selection with gene flow.

We now extend the idea for comparing selection gradients
in a manner to mesh it better with the underlying migration
structure. Let M be a fixed backward migration matrix

having eigenvectors

VM:X , Me =€ ., &= (1,1,...,1) P Vo= (Vl,-o-,Vn) (2.23)

and v normalized to satisfy v, = 1 .

=

i=1

Let Qv,e) consist of the collection of all non-negative

matrices A with the properties (2.23). d(v,e) constitutes

a convex closed set of matrices containing M and with each

A all its powers. The rank one matrix J = ||eiv.||

(ei = 1) 1is also a member of a(v,e) . When v =-ce,

plainly @f(e,e) coincides with the collection of all doubly

stochastic matrices.

Definition 2. Consider two arrays of selection coefficients

— - '
s = (sl,s2,...,sn) and s (sl

different environmental selection gradients § and £’

,...,s;) reflecting two

’

To ease the exposition we have focused on comparing sets of
aa-genotype selection coefficients. The extension to selec-
tion functions is obvious.
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respectively. We say that é;' is less heterogeneous than

E; with respect to the migration structure M if the

relation

ln

' = As holds for some A € & (v,e) . (2.24)

The least heterogeneous environment in the hierarchy
implicit to the above definition is the constant vector

s = (5,8 ...,5 ) with s, = z s.v, =S for all i .
- n i i1 i v

n n
sfv, = S.,V, . (2.25)
L s; )

It also follows that

n , 5 n 5
Z v, (s.-S )" < z v, (s,-S )
. i7i v . i7i Ty
i=1 - i=1 -

showing that the environmental selection variance (weighting

subpopulation i by the factor vi) is smaller for environ-

ment é;' than for environment & .
The following general result holds in many circumstances:

Principle I. Let M Dbe a backward migration matrix of the

structure (2.11). Let é; and E;' be two environmental

selection gradients such that £’ is less heterogeneous than

é; with respect to the migration structure M in the sense

of Definition 2. Symbolically, we write E' < & - Define

D' to be diagonal selection matrix engendered by 67 i.e.,

1 1
[ 1 —_— e
D diag (l+s! ¢ Taev e l+s,) and D analogously
i 2 n
determined from the selection coefficients (sl,sz,...,sn)
Then
p(MD) % p(MD') . (2.26)

Accordingly, protection of the A-allele is more likely in the

. '
more heterogeneous environment éf over that of éi .

641



S. KARLIN

n

For the extreme case s' = (S ,S ,...,S ) , S = Z S.Vv,
= v v v v i'i

) i=1
then &' < & - {s)1s,,...,5 )} and indeed (2.26) holds by

virtue of the analysis leading to (2.12).

Comparison of the models of hard and soft selection with
reference to the existence of protected polymorphism reduces
to an important case of Principle I. It can be proved that

. . S .
the environments of soft selection és( ) is more hetero-

. . H .
geneous than the environment of hard selection (E) in the

guise of Definition 2.

We would expect from Principle I that the phenomenon of a
protected polymorphism is more fascile with soft selection
over that of hard selection: Where local fitnesses also
influence the migration flow, the resulting environmental
structure amalgamates to a more homogeneous population beha-
vior entailing increased possibilities for total fixation.

The validity of Principle I is established in a number of

examples including the stepping stone migration pattern for a

monotone cline model, see Karlin and Richter-Dyn [1976a], and

in the Deakin migration form and other cases, see Karlin

[1976]. This fact for the Deakin case was discovered first
by Christiansen [1975]. Principle I appears not to be
correct in complete generality without imposing some res-

trictions on the migration structure.

C. Protection for different degrees of isolation and mixing

in migration structures

When does one migration pattern entail more mixing than a
second migration pattern? We will introduce two criteria to
deal with this question and discuss their implications with

reference to the manifestation of protected polymorphisms.
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(i) Two stage versus one stage migration flow

We start with the following definition.

Definition 3. A backward migration matrix Ml is said to be

more mixing than the backward matrix M2 provided Ml has

the form
M, = MM, with M and M commuting
1 32 2 3 (2.27)
(i.e., MM, = M M)

23 32

and where M3 is also a migration matrix.

Thus the extent of migration involved in M1 is effec-

tively the outcome of two stages of exchange (and/or) immi-

gration with one stage corresponding to M2

It is generally anticipated that two operations of gene
flow spread the effects of the local selection forces engen-
dering the workings of a more homogeneous population. This

is not a valid general conclusion. Where M2 and M3 entail

excessive movement possibly cancelling each other then Ml

can reflect less movement tgan M2 or M3 separately.
Indeed, by Definition 3, M is more mixing than M , but
the extreme example

M = 0 1 and M2= 1 0

1 0 0 1

shows that M2 may involve no exchange of population while
M entails a total exchange. Accordingly, there are essential
limitations on the amount of mobility ascribed to M2 and

M3 in order that Ml reflect genuinely more mixing than

M2 . The exact requirements on M2 and M3 are embodied in
the condition (2.28) below which imposes a constraint on the
magnitude of movement and mixing satisfied in many biologi-
cally reasonable contexts. These include cases of stepping
stone migration, the examples of (1.8) and others.

We have established a precise result enabling us to compare
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the influence of different levels of mixing with respect to
the existence of protected polymorphisms and this is now
stated formally. Further interpretations and implications

are set forth in Section 3.

Result I. Suppose each Mi in (2.27) admits the represen-

tation

M, = F,P.G, , i=1,2,3 (2.28)

where Fi and Gi are positive definite diagonal matrices

with Pi a positive semi definite matrix (cf. the discussion

of (2.11)). If M

1
holds, then for any selection matrix D we have

is more mixing than M2 such that (2.28)

p(MlD) < D(M2D) (see (2.4)). (2.29)

Thus, where the multi deme population determined by the

migration selection parameter set {Ml,D} entails A-

protection then with the migration pattern M2 (which is

less mixing than Ml in the sense of Definition 3) and the

same selection structure of D , protection of the A-allele

is, a fortiori, assured.

In particular, if M possesses the representation (2.28)
then for each integer k , we have

o p) ¢ pdpy . (2.30)

It is important to underscore the fact that the relation
(2.29) is not universally correct with respect to any two

comparable migration patterns. In fact, consider a system

of 2-subpopulations having equal deme sizes with homogeneous

migration matrix

1=y,y
M = .
Yo l-y
It is elementary to check that M is more mixing than MY
1 2

644



POPULATION GENETICS AND ECOLOGY

in the sense of Definition 3 if and only if Y1 > Yy o How-
dl 0

ever, for any D = , p(MYD) decreases to a mini-
0 d2

mum attained when ¥y = 5 and afterwards increases. Of course,

1
MY for vy > > does not fulfill the requirement of (2.28).

The significance of these examples is tantamount to the pheno-

menon that where the migration structure induces excessive

oscillatory mixing then the possibilities for a protected

polymorphism are diminished.

The hypotheses underlying Result I are satisfied for the
homogeneous stepping stone forward migration matrix of any
number of demes provided m < %- allowing for a general

prescription of deme sizes.

(ii) Rates of homing

The following criterion for comparison of two migration

patterns seems natural.

(1) (2)

Definition 4. Let M and M be two (backward) migra-

tion matrices. If for each i

a2 s L

.. o2 m,. for all j # i (2.31)
13 1]
then it is suggestive to say that M(z) is more mobile than

u

The relation (2.31) tells us that after migration the num-
ber of inhabitants in locality f2~ originating from any
other locality other than %?i is larger for the migration

M(z) as against M(l) and this property holds for all

mode
i

A set of matrices comparable in the sense of (2.31) incor-
porates the one parameter family

M(a) = (1-a)I + aM (M is a fixed stochastic matrix). (2.32)

The Deakin migration pattern (1.7) is a very special
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example of (2.32) with M = ||eicj|’ ' (ei = 1) . We can
interpret 1-o0 as the innate propensity of an organism to

actively home, independent of selection and deme sizes. A
proportion a of the population follows the migration

pattern M . When o = 0 all demes are strictly isolated
and when o = 1 the migration behavior of the total popu-

lation per generation is summarized by M
(o)
It is trivial to check that M is more mobile (in the
(o)
sense of Definition 4) than M if and only if oy > o,
Allowing for dispersal rates varying with the deme origin

we obtain an n-parameter family of matrices

(o)
= (1- + . i,j =1,...
mij (1 ai)éij aimij , 1,3 1, ,n .33,
M = |]mij|| ;o= (al,...,an)).

. . (a) . (8)
Obviously the matrix M — 1s more mobile than M ~ con-
structed with dispersal parameter sets a = (ul,az,...,un)

= .. i P .2 B,
and B (Bl,. ,Bn) , respectively, if al Bl for every

i
To what extent does "more mobility" enhance the maintenance
of a protected polymorphism? Comparison of the migration

) (8)

structure M(—- and M with n genuine parameters is
formidable and does not point to a coherent relationship. 1In
fact, decreasing only the first component oy need not
ameliorate the occurrence of protected polymorphisms.

For the case of a uniform dispersal rate (the model of
(2.32)), we find in substantial generality, independent of
the selection gradient, that the likelihood in favor of a
protected polymorphism becomes stronger as the degree of
mobility diminishes (o decreases).

The following general result is correct.
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Result II. Consider the one parameter family of migration

matrices (2.32) where M has the form (2.28). Let D be a

diagonal matrix with positive terms on the diagonal induced

by the spatial array of aa-selection coefficients (see (2.4)).

Then
P (MaD) = p(a)

is a decreasing function of a .

It follows that if a protected polymorphism exists for a

level of homing 1l-o M(u)

, and migration structure then a

0
protected polymorphism is assured for any higher level of
homing. This finding is consistent with the small parameter

theory of Karlin and McGregor [1972].

3. DISCUSSION

In explaining polymorphisms and clines, emphasis is usually
given to changes in selective factors between and within
environments. It is also widely recognized that in many
natural situations migration may play an important, even a
dominant, role. The following theme recurs in many works
concerned with population genetics: The ongoing process of
evolution probably requires adjustment to a constantly
varying environment and to the combination of characteristics
that survive from the different populations. Important
sources of variability in natural population can be genes and
gene complexes transferred from other populations. Also
widely recognized is that differentiated populations retain
the ability for exchange of genetic material. Put in a more
descriptive language, spatial and temporal variation in
environment are considered to be highly involved in the main-
tenance of genetic variation in populations (Darlington [1957],

Wright [1968], Dobzhansky [1967]). The results reported in
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Section 2 bear a variety of implications pertaining to the
theme cited above.

Through a series of mathematical models the representations
of genetic variability in a subdivided population acted on by
migration selection forces has been recently studied by a
number of authors including Deakin [1966], [1972], Prout
[1968], Maynerd-smith [1970], Christiansen [1974], [1975],
Strobeck [1974] and others. The existence of "stable poly-
morphic equilibria" has been mostly confirmed by showing that
each allele is protected against disappearance. (This method
used for the confirmation of polymorphism is reliable only in
the context of two alleles.) All the above theoretical works
confined attention to very special models mostly variations
on the Wright Island model. The discussion of special
examples are undoubtedly of some separate interest and may fit
some natural situations. But even here, complete exact
results on protection for the important stepping stone cline
models are as yet unavailable. (In this connection see
Karlin and Richter-Dyn [1976].)

1. It is commonly stated that a spatial and temporal
environmental variation and increased population subdivision
enhance the occurrence of polymorphism. The theory expounded
in this work and its detailed development in Karlin [1976]
circumscribes somewhat the scope and validity of this con-
tention. For this purpose it is essential to delimit care-
fully the concept when two environmental selection gradients
can be compared with reference to their degrees of hetero-
geneity (this is not always well defined). Such comparisons
must take proper account of the migration structure coupled
to the spatial selection gradient.

Various authors have emphasized that "average heterozy-

gosity seems to increase with increasing environmental
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variability". Most averages are usually computed by weighting
equally likely over space and/or time. We have determined in
Section 2 that it is unnatural when constructing the average
to improperly scale the effects of deme sizes, differences in
local migration rates and the spectrum of selection
influences. Formulas (2.12) and (2.6) indicate possible

appropriate weightings.

2. A precise sense in which more heterogeneous selection
gradients engenders more polymorphism is the intent of Prin-
ciple I, now restated (see Section 2 for its detailed for-

mulation). If the environment E; (characterized by the aa-

genotype spatial selection coefficient array {si}n ) is
1 ==

] . n
more heterogeneous than environment é; M {si} with respect
1
to the migration structure M in accordance with Definition

2, then protection of the A-allele is more likely with é;

over g' .

The above assertion appears to be true in substantial

generality. We have accomplished its validation for several
important models but we do not have a complete classification.
The comparison of soft versus hard selection fits perfectly
the framework of Definition 2. We have established in a num-
ber of cases, including the migration selection cline setting,
that Principle I applies with hard selection corresponding to
a less heterogeneous environment vis a vis soft selection.
However, the conclusion that protection for hard selection
entails protection for soft selection is not universally
correct. Some restrictions on the nature of the migration

structure are essential.

3. Recent theoretical studies show that with temporally

fluctuating selection intensities the extent of polymorphism
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increases, see Gillespie [1973], [1974], Hartl and Cook
[1973], Xarlin and Lieberman [1974]. Bryant [1974] has
reviewed some of the literature on temporal and spatial
selection heterogeneity related to natural enzyme polymor-
phisms. He dwells on the relative roles of spatial and tem-
poral environmental variation and claims on the basis of
mathematical work of Haldane and Jayakar [1963] and some work
of Charlesworth and Giesel [1972] and Giesel [1972] that the
conditions for polymorphic stability in the presence of tem-
poral variation are more stringent than for spatial variation.
Bryant goes on to conclude that "the major trend of genetic
variation seems intimately associated with temporal variation
in the environment, while the remaining trends in some cases
may be related to other parameters, including spatial hetero-
geneity".

This conclusion is not concordant with our findings repor-
ted in Section 2. With population subdivision and moderate
migration flow a sufficient condition for the existence of,

say, protection of the A-allele is

n
1
.z Vi T+s, 21 ()
i=1 i
where {si}n consists of the spatial array of aa-genotype

selection c;e%ficients among the n 1localities and the com-
ponents of (Vl'v2'°"’vn) reflect the influence of migration
and varying deme sizes (see (2.23) and (2.12)).

For a cyclically (e.g. seasonal) varying set of selection

effects {si}n of period length n a sufficient condition
1

n 1 i
.H ( 1+s., ) > 1 (%)
i

for protection is
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where v, now relates to the variable population sizes over
successive generations.

The generalized arithmetic geometric mean inequality

v
o ()¢
121 i l+si 1 l+si

shows that protection of the A-allele is more easily main-

tained with spatial as against temporal variation in selec-

tion coefficients. This suggests that spatial rather than

temporal heterogeneity of the environments is a more powerful

force for polymorphism. For temporal heterogeneity the

determining factor is a generalized geometric mean of fitness
values while in spatial heterogeneity a generalized arith-
metic mean of fitness values is critical. It should be
emphasized that we are comparing the same average levels of
selection in the two cases.

The contrast is more manifest with small cumulative selec-
tion effects, (zlsi| small) , then (%) is essentially equi-

valent to

2 2 v 2
c” >s_ with ¢ = Z v (si—Sv) and
i=1
()
n
S = E s.V
=1 **t
while (%x) reduces to
02
—2— > SV . (*)

Thus with temporal fluctuating selection intensities the in-
equality (¥) (by a factor % ) brings less likelihood of
protection.

Hartl suggested an intuitive argument for the above con-

clusion. 1In the circumstance of cyclic temporal selection
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variation, once fixation occurs in a generation then fixation
persists thereafter. Whereas in the presence of spatial
selection variation even with fixation in one locality for a
generation, still the alternative type can be reintroduced by
migration from other localities.

4. BAn accurate assessment of the significance and descrip-
tions of the degree of homogeneity or heterogeneity in gene
frequency patterns correlated to the environmental selection
gradient and population structure could only come from a
determination (qualitative or explicit) of all the stable
equilibria, their domains of attraction and the dynamic beha-
vior of the process. This is undoubtedly a formidable analy-
tic task. We had some success on this objective for the
cline stepping stone model (Karlin and Richter-Dyn [1976]).
The evaluation of p(DM) (see (2.4) for the definition) does
give some information concerning the gene frequency patterns
that are possible in the general case. To wit, if p(DM) is
substantially larger than 1 then certainly in some locality,
at least one, we could expect a significant frequency of the
A-allele. If p(DM) is close to 1 but still exceeding 1
then the A-allele is protected but generally represented
throughout the population in small frequency. The early dis-
cussion of Section 2 gives quite good lower estimates of p

for several important cases of migration patterns.

5. It is also of interest to contrast migration struc-
tures as to their degrees of mixing and isolation. Two such
concepts were introduced in part C of Section 2 and analyzed.
The influence of migration structure on the maintenance of a
protected polymorphism and its characteristics can be divided
into four categories according to the extent of migration

flow; very small, small to moderate, moderate to uniform
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mixing, and strongly oscillatory movement. In each case,
based on the analysis of Section 2, a number of qualitative
inferences are highlighted and discussed.

(i) Very small migration flow. 1In this circumstance, the

degree of environmental heterogeneity coupled to the initial
frequency state plays a decisive role in the evolutionary
development of the population:

(a) With selection forces favoring different genotypes in
different niches (demes), a preponderance of one or
other alleles predominate in each deme. The average level of
heterozygosity is low but the level of polymorphism is large.

The emerging gene frequency arrays are considerably hetero-
geneous. The exclusive contingency of avoiding polymorphism
for any sets of initial conditions is that a single allele
has selective advantage throughout the population range (cf.,

Karlin and McGregor [1972al], [1972bl).

(b) With a homogeneous selection gradient involving local
heterozygote advantage, a relatively homogeneous poly-
morphic frequency state is achieved expressing a high average

heterozygosity.

(c¢) A mixture of underdominance, directional and overdominant
spatially varying selection expression can produce a
wide variety of stable polymorphic and/or fixation states and
the actual equilibrium established depends sensitively on the

initial frequency state.

(ii) Small to moderate outbreeding or mobility rates.

Result II (Section 2) tells us that the strength of a pro-
tected polymorphism increases with the extent of isolation of
demes. It is important to caution that this result applies

in general form only if the rate of outbreeding is diminished
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uniformly independent of the deme sites. A decrease of dis-
persal at a particular deme while the other dispersal rates
are kept constant, can engender the opposite effect making
fixation more likely.

Increasing strength of protection means that the fixation
states are more repellant and that each allelic frequency is
represented with substantial frequency in at least one deme.
There appears to be no relationship between the strength of
a protected polymorphism and the form of the polymorphic
equilibrium. With low migration rates we would expect con-
siderable heterogeneity in gene frequency. For moderate
migration, more monomorphic outcomes are revealed unless sub-

stantial heterozygote advantage is operating in each deme.

(iii) Moderate to uniform mixing migration rates. The

contribution of the demes substantially blend in all respects.
The outcomes now depend in a complex manner on all parameters
of the model producing both fixation and polymorphic possi-
bilities with fixation occurrences usually more frequent
unless other forces are involved. With local heterozygote

advantage a usually unique global polymorphism is maintained

independent of the nature of gene flow.

(iv) Strongly oscillating migration patterns. Protection

is now again more likely than with uniform mixing. There
appears to be a threshhold level of medium migration flow
such that the maintenance of a stable polymorphism is minimal

at that rate of migration.

6. Several authors have recently appealed to Levins
[1968] to help explicate the influence of fine versus coarse
grain environmental expression pertinent to genetic varia-
bility. Although this theory is regarded as mathematically

based, it is principally graphical and descriptive in
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character. One commentary of this theory is that a very
mobile organism experiences many different conditions, the
average of which is similar for all members of a population.
The effective environment is accordingly fine grained sig-
nifying little uncertainty and therefore the organism may
well fix on a given genotype adaptive to the bulk of its
experiences. For relatively immobile population, the environ-
ment experiences is likely to be uncertain and therefore the
adaptive strategy of the population is to maintain substantial
variability with different alleles predominant over appro-
priate ranges of the population.

The tenuous contact of these concepts with our work is
that a migration pattern with substantial flow has indeed
decreased opportunities for polymorphism. More precisely,
Result II provides an analytic assertion that with increasing
outbreeding (or mobility), the manifestation of multiple
phenotypes and genotypes is reduced. There are restrictions
on the validity of Result II. The reduced mobility must apply
essentially uniformly over the whole range of species.

A different approach to the evaluation of degrees of

mixing is the substance of Result I in paragraph C of Section

2.
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