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1. INTRODUCTION

Recent experimental and observational studies have established conclusively
that natural populations are often genetically polymorphic at a large proportion
of loci. Specifically, the discovery of vast numbers of isozyme polymorphisms
for plant, insect and animal organisms (Lewontin and Hubby, 1966; Harris,
1966; Brown and Allard, 1969; Marshall and Allard, 1969; Kojima and Tobari,
1969a, b, and others) provides incontestible evidence of the considerable
variability present in wild populations.
Moreover, a number of animal populations which appear to be practicing

partial assortative mating and plant populations which are almost obligate
inbreeders, but which do outcross occasionally, exhibit a high degree of poly-
morphism. A noteworthy fact for many of these highly selfing plant populations
where considerable polymorphism is present, is that the frequency of the
heterozygotes is small while the homozygotes of the different alleles exist in
approximately equal proportions [seeAllard, Jain and Workman (1968), Marshall
and Allard (1969) and references] .
It is perhaps useful to review various known criteria which may lead to stable

polymorphism.
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(i) Heterozygote advantage. The most prominent and classical case of
selection balance involving two alleles at a single locus.

(ii) Mutation selection balance. Selection favoring one genotype and
recurrent mutation producing the deleterious allele (Haldane, 1924).1

(iii) Migration selection balance. Selection benefiting different genotypes
in distinct niches with some intermigration mixing the two populations
(H. Levine, 1953; Moran, 1959).

(iv) Temporal variation in selection. Selection varying in successive
generations alternately favoring different genotypes (Haldane and Jayakar,
1963a).

(v) Haploid-diploid selectionbalance. Selection tending to favor different
genes during the haploid vs diploid phase (Scudo, 1967).

(vi) Selection varying between sexes. Selective advantage conferred on
different homozygotes in the two sexes (Owens, 1953; Bodmer, 1965).

(vii) Frequency-dependent selection. For example, favoring the rare
genotype (Haldane and Jayakar, 1963b; Kojima, 1971; Sheppard, 1958;
O'Donald, 1969; and Clarke, 1964).

(viii) General selection balance. Polymorphic equilibria resulting from
balance of fertility, viability and segregation distortion forces [e.g., see Hartle,
Hiraizumi and Crow (1967), Feldman, Nabholz, Bodmer (l969), and Karlin
(1968a)].

(ix) Two-(or multi-) loci selection balance. Epistasis and recombination
effects creating polymorphisms [e.g., Lewontin and Kojima (1960), Lewontin
(1964a, b), Karlin and Feldman (1970)].

(x) Multilocus mutation selection balance. Combined effects of mutation,
recombination and selection (Karlin and McGregor, 1971).

All the above produce cases of polymorphism due more or less to opposing
tendencies among the forces of natural selection. The following criteria describe
some causes of stable polymorphic situations due to balance in sexual selection
(e.g., mating pattern and/or mating behavior) as distinguished from natural
selection.

(xi) Negative assortative mating. [e.g., Workman (1964), Scudo and
Karlin (1969)]. Each phenotype is endowed with a tendency (usually genetically
. controlled) to mate more frequently with the opposite phenotype.

1 We have assigned references to these criteria without intending to attribute priorities
for their discoveries. The list of indicated references, of course, does not constitute
a complete set.
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(xii) Incompatibility and self sterility mechanisms. See, for example,
Finney (1952), Wright (1939, 1969), Workman (1964), and Karlin and Feldman
(1968a, b). This includes factors for sex determination, etc.

In almost all mathematical modeling of a genetic system producing a stable
polymorphism, it is customarily postulated that there is some clear
operating to the advantage of one of the types and anothe.r m.echanism
an alternative type. The fact that opposing pressures maintain the
usually means that if one of these pressures is removed the other force effective
alone will direct the population to an obvious fixation.
In contrast to cases producing balanced polymorphism we cite several

established criteria usually bringing the population to fixation.

(a) Directional selection in favor of a specificallele. For example, where the
viability of the homozygous genotype AlAI exceeds or equals that of A IA2 ,

whose viability exceeds that of A2A2 • Manifestly, fixation on the AlAI genotype
results.

(b) Disruptive selection. (The viability of the heterozygote is
than the viabilities of both homozygotes.) It is known that the analytic con-
sequences of disruptive selection yield ultimate fixation which homozygote
is fixed depends on the initial composition of the population.

(c) Assortative mating for dominant traits. (Preferences or.
for mating between similar genotypes) It was found by analysis
[see Scudo and Karlin (1969), and Karlin (1968)] of models of
partial assortative mating for dominant autosomal traits (e."e? With effects of
natural selection superimposed) produce consequences similar to those of
disruptive selection or those of directed selection for a dominant gene, precluding
the existence of stable polymorphism in these situations.

(d) Selectionfor two-locus haploidpopulations. Feldman (1979
that in any haploid two-locus population practicing random .matlng, viability
selection pressures alone cannot produce a stable polymorphism.

(e) Regular inbreeding systems. Including sibmating, parent:-offspring
mating, imprinting, consanguinous mating, etc., mostly lead to fixation .

The theoretical bases of fixation indicated in criteria (b)-(d) are not concordant
with much observational data. Specifically, in situations of heterogeneous
environments, wild populations are regularly exposed to some of
disruptive selection for many characters; yet a expression of
polymorphism persists. In his discussion of the possible of
disruptive selection, Mather proposed that in certain
selection could give rise to polymorphism and in others to isolation. The
intuitive argument for this supposes that different optimum phenotypes when

dependent upon one another produce a polymorphic situation and otherwise,
fixation or isolation evolves. This problem is taken up in detail in Karlin and
McGregor (1972).
Consider next the situation of partial assortative mating [case (c)]. As pointed '

out above, most situations of populations involving partial assortative mating
induced by a dominant trait and, more generally, most inbreeding systems
of mating, produce pure populations [e.g., see Crow and Kimura (1970), Karlin
(1968), and references therein]. Nonetheless, many animal populations in the
presence of partial assortment and many plant populations practicing largely
self-fertilization (over 95%) with little outcrossing, exhibit a high degree of
polymorphism with no clear selective differences (Allard, Jain and Workman,
1968 and references). What is even more striking in many highly selfing plant
populations (e.g., wild oats, barley) where polymorphism is widely present
(especially for isozyme characters), the frequency of the heterzygotes is small
and a preponderance of homozygotes of all the different alleles are represented
in approximately equal proportions. This kind of polymorphism manifested
for both isozyme and morphological characters definitely cannot be explained
on the basis of heterosis. It has been suggested that frequency-dependent
selection may be operating but this rationale seems difficult to justify
and is not consistent with data manifesting large numbers of homozygotes.
However, polymorphic phenomena for partial assortative mating populations
can be based on a multiniche version of the same model (see Section 2).
In case (d) of a two-locus haploid population, it was stated previously that

polymorphism cannot be maintained by selection balance alone. Thus, if
polymorphism obtains some other influence apart from selection pressures
should be operating. Along these lines, it is implicit in the work of Raper
and others that random mating is not applicable to a number of haploid models
of fungus populations (e.g., Schizophyllum Commune) and indeed, certain
incompatibility mechanisms are in force. For such a two-locus haploid
population, Feldman showed that a stable polymorphism can be obtained
attributable to the incompatibility mating pattern alone. We show in Karlin
and McGregor (1972) under wide conditions on the selection parameters, that a
polymorphism is possible for the multiniche version of the same two-locus
haploid population.
A general tenet will emerge from our analysis to the effect that almost all

selection models bear possibilities for stable polymorphism by spreading
spatially the selection effects (i.e., to several niches) or temporally (i.e., to
several generations) and keeping the interaction between niches or generations
slight.
Kimura (1968, 1969a, b), King and Jukes (1969) and some others, in

attempting to explicate the vast observed variability and the apparent fast rate
of substitution of new alleles, stress the proposition that most allelomorphs are
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In most genetic models the transformation (1.1) is displayed as a ratio of two
algebraic polynomials in the frequency variables. These transformations
naturally reflect mating behavior, segregation pattern, selection, migration
and mutation pressures, temporal and spatial (cyclical or other) changes, the
influence of recombination when more .than one locus is involved and other
relevant factors of the process.
In each system f!l>a. there usually exist certain equilibria [invariant points

under the transformation (1.1)] which are locally stable. The collection of

neutral, existing in populations with small population number where genetic
drift is the salient influence . The theory asserts that all loci are either fixed or
in a transient state approaching fixation. There is still much active discussion
in the literature on these last points.
Most attempts in population-genetics literature to explain polymorphism

concentrate on a single or at most a combination of two influences. It is likely
that the actual basis for the polymorphism may be attributable to a large variety
of sources each contributing in a slight way. Along these lines Ford (1964, 1965)
presents many cases of polymorphism inexplicable on the basis of overdominance.
Furthermore, he underscores some cases where several contributing influences
are clearly involved. Mayr (1963) points up other examples.
In this paper we highlight a principle (perhaps intuitive, maybe surprising,

that needs care in its applications) that serves as a basis for generating poly-
morphism. Its elaboration will provide a quantitative approach to analyzing a
mixture of genetic or ecological systems influenced by a variety of pressures and
mating patterns. We will find that stable polymorphisms in the combined
system can be maintained by one or more dominant effects in each system
(which may differ between systems) and small effects due to slight interaction
among all the systems . We describe its essential feature loosely now and later
a precise formulation will be given.
Suppose there exists a number (say p) of ecological or genetic systems

f!I\ , f!l>2 ,..., f!l>o' e.g., separate communities, niches, with a finite number
(say r) of possible types Al , A2 , ... , Ar that may be represented in each system.
We generally denote the frequencies of type AI' A 2 , ... , A r in population
(or systems) f!l>a. by Pa. = (Pa.l ,...,Pa.r) and frequently subscript ex is suppressed
when no ambiguity of interpretation is possible. Suppose each system reproduces
independently in some fashion such that the frequencies p,,' = p", in
the next generation are determined by the relations

• A sequence ij.. converges geometrically fast to ij at ra te ,\ (0 < ,\ < I) if th e distance
between ij.. and ij is of the order ,\n. Algebraic convergence means an order of difference
like lin" for some positive "'. usually ", = 1.

(1.3)ex = 1, , p
l = I, , r ,

r

= L ma..dl3. i(h.l ,...,h.r),
13=1

equilibria includes polymorphic and peripheral (i.e., boundary equilibrium)
points where in the latter case some types are not represented . Local stability
is to be understood in the following generalized sense. A frequency vector p*
is said to be locally stable if.for any prescribed neighborhood U of p* there
exists another neighborhood V, p*EVe U such that f (f7) C V (17 denotes the
closure of V), and therefore the iterat es of p) = p)) for any
starting point pE 17 never depart from V. In most cases, local stability of an
equilibrium p* actuall y entails that if the initial frequency vector p is sufficiently
close to p *, the indeed converge to p*.
The notion of stability prescribed above makes no stipulations on the rate of

convergence to the equilibrium. However, in most genetic systems when the
equilibrium expresses a stable polymorphic balance, then convergence takes
place at a geometric rate.s But on the other hand when the equilibrium is of the
boundary kind (mostly a population of a single type) then convergence not
uncommonly occurs at an algebraic rate.
Suppose now that the system (f!I>l ,..., f!l>o) is coupled by some form of inter-

action. The coupling or interaction parameters can be, for example , in the form of
small (i) mutation pressures, (ii) recombination or crossover probabilities.
(iii) migration or out crossing rates, (iv) seed load reflecting carry over from
previous generations, and similarl y.
To fix the ideas we will first consider the example when there are migration

coefficients ma. .13 with the interpretation that after reproduction a proportion
ma. .13 of individuals from f!l>13 migrate to f!l>a. . The recursion relations describing
the evolution of type frequencies in the migration-coupled system are then

It is naturally assumed that ma..13 ;;:, 0 and ma..13 = 1.
The migration specified by the p-square matrix M = II m a..13 11 would he

called weak ifM is sufficiently close to the identity matrix, i.e., the ma../3 with ex =f- f3
are all sufficiently small. In this event the flow between systems is slight. (All
subsystems are presumed in the present theory to be of large size.) If the
uncoupled system has a locally stahle equilibrium point p * (i.e., set of equilibrium
vectors Pa.*) then we expect the coupled system to have a locally stable equilibrium
point q* near p * provided the migration coupling is sufficiently weak.
The above statement is a special case of a general principle for weakly coupled

systems which appears to have a wide variety of important applications to
genetic and ecological systems. We formulate in this paper precise conditions

(1.1)

(1.2)

j = 1,2,..., r ,

We sometimes write (1.1) in vector notation taking the form
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such that for each i, 1 i r, P:'; is positive for at least one 0: (0: may depend
on i) . The set of equilibrium frequency vectors p *r.:comprise a fi xed poinWa* of the
uncoupled system in which every possible type is represented in at least one subsystem.
Now if q* is the nearby equilibrium point of the system under weak coup ling
then every type will still be represented in at least one subsystem provided th e
coupling is sufficiently weak. In the migration-coupling example there is a
simple condition which will guarantee that at the equilibrium state q* each
possible type is actually represented in every subsystem. The matrixM = II ma.all
is called irreducible if there is a power Mk whose elements are all strictly
positive. This means that a k-th generation descendent of an individual from
any subsystem has a posit ive probability to be in any other subsystem.

under which th e conclusion is valid. It should be emphasized that the conclusion
may be violated for strongly coupl ed systems, in which equil ibria behavior of
the complex system may be dominated by tendencies in one or more of th e
subsystems. We do not mean to impl y th at the only possible situations of
polymorphism are those corr esponding to distinctive dom inant effects in
separate niches accompanied by slight interaction among the niches. When
migration parameters are large, or more generally, even when the interaction
is moderate, th e influences operating on th e total system become sufficiently
mixed such that the evolutionary dynamics and equilibrium behavior of the
process is exceedingly difficult to analyze except in a few oversimplified cases.
There, obviously, occur in th e wild, cases involving strong interaction among
subniches, some producing polymorphism and others resulting in fixation .
For specific appli cation of th e th eory in a number of cases we refer to Karlin

and ]\IcGregor (1971, 1972b). In the first of these papers a small mutation
pressure plays th e role of furni shing the requisite mixing . In (1972a) the
small parameter is served by th e migration rates. In (I 972b) small recombination
parameters produce th e desired interaction effects. See also Eshel (1972) for
additional applications of this method of small parameters .
Usually one can parametrize the strength of coupling by one or more small

parameters (in th e specific example cited previously, by the ma,a with 0: -=1= {3),
and show that as the parameters go to zero there is a unique equilibrium point
q* which approaches p*.
\Ve say a full polymorphism is atta inable in th e uncoupled system

W\,;1'2 ,..., 9 p ) if there is a set of equilibrium frequency vectors P«*, 0: = 1,
2,....p where Pn* is a locally stable solution of

Pa* = f a(P«*), 0: = 1,2,... , p

stable equilibrium state in which actually every possible type is represented in every
subsystem.

Probably th e crux of this assertion is intuitive (although not always valid) to
some theoretical biologists and undoubtedly has been expres sed in some
qualitative terms by others (consult the discussion on this point).
As a simple appl ication of the principle stated above, consider the case two

alleles A} and A 2 at a single locus with two niches with selection coefficients
1, 1 - a, 1 for the genotypes A}A} , A}A2 , and A2A2 , resp ectively, or more
generally, we can suppose that the fitness coefficients of the genotypes are
s} , S2 , Sa in niche 1, a} , a2' aa in niche 2 where S2 < min(s} , sa) and
a2 < min(a} , aa). Thus, in each separate niche disruptive selection operates
and ordinarily the population would be fixed. However, invoking the conclusion
of our Principle I we infer if a small fract ion (necessaril y small) of the population
of each niche migrates to the other niche then there are possible sets of stable
polymorph isms with both alleles represented in each population. Of course , the
possibility of stabl e global fixations also occur.
The polymorphic equilibria of this example have the property that a

preponderance of one homozygote occurs in one niche while a preponderance
of th e alternative homozygote is maintained in the second niche. It is reasonable
to speculate that some forms of habitat selection confer an advantage, say on
A 2A 2 in niche 2, on A}A} in niche 1, while the heterozygote (or hybrid type)
bears marked disadvantage to both homozygotes in each of the niches yet a
global balance is preserved (consistent with data of Allard on certain traits of
plant populations).
What evolves depends cruciall y on the initial composition of all the

subpopulations. Thus, whether fixation transpires or polymorphism is attained
could be a function of founders and random fluctuation effects determi ning the
initial cond itions. Small colonies of different homozygotes could inhabit
neighboring localities with selection favoring both homozygotes over the
heterozygotes in each locality. Subsequently, population size grows and
presumably some slight gene flow binds the two localities. ["Perfect geographic
isolation of two populations is most usually impossible" (Darlington, 1957).]
A suit able application of the principle then points to a polymorphism with most
existing types being homozygotes [see also Karlin and McGregor (1972a) for
a more detailed quantitative analysis of this two-niche model] .
The extension to the case of three alleles is as follows. Consider a three-allele

model involving alleles AI ' A 2 ,As with viabilities of A ;A j specified by the
matrix with the obvious interpretation

P RINCIPLE I. If a full polymorphism (defined in paragraph above) is attainable
in the uncoupled system and if the migration matrix is irreducible and sufficiently
weak (i.e., M close to I = identity matrix), then the coupled system has a locally

£; , 0: ; > 0, i=I,2,3,

n a ralll t::= lt:: r s 1 111 lIH:: CAC111l l-/ 1\,.. 1,," "" Y.l vu.;:J..L J t LoT1 ""u..... n ............ - / , I'
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so that each homozygote is favored . Consider two replicate systems of the above
structure with slight migration between them. It can be proved that there
exists no stable polymorphism with all genotypes represented. (The proof
involves the converse version of Principle II, stated as Principle III below.)
However, if the above 3-allele genetic population is replicated in three
systems with slight gene flow between them, then a stable polymorphism is
possible involving all types. (The proof is accomplished by application of
Principle 1.)
We now state the principle in more general form.

PRINCIPLE II. If a system of transformations acting on a certain set (in finite-
dimensional space) has a "stable" fi xed point then a slight perturbation of the
system maintains a stable fi xed point nearby.

The theme of this principle is quite intuitive although care in its application
and interpretation is vital. Its validity does not require the stability hypothesis
to apply in a geometric sense. In fact, for numerous important genetic models
the stability of the relevant equilibrium is manifested only in an algebraic sense
(e.g., this happens in the case of assortative mating).
The precise mathematical statement of Principles II and III and refinements

and extensions are elaborated in Sections 3 and 4. In Section 2 the theorem
is applied to a multiniche model of partial assortative mating. Other applications
are set forth in the companion paper of Karlin and McGregor. The final section
discusses some implications and limitations of these principles.
A converse proposition to Principle II of considerable value in ascertaining all

possible equilibria is stated in rough form now. For a precise mathemat-
ical statement the reader should consult the discussion of Theorem 5 in
Section 4.

PRINCIPLE III. Iff(x) is a differentiable transformation acting on a certain set S
(infinite-dimensional space)having afinite number offixedpoints, sayYl ,Y2 ,... ,Yr ,
with the property that the linear approximation to f(x) in the neighborhood of
each fi xed point has no eigenvalue of absolute value one, then a slight differentiable
perturbation off( x) maintains at most a singlefi xed point Z i E S in the neighborhood
of eachYi • Moreover, Z i is locally stable iffYi is locally stable.

It is worth noting that some fixed points of f(x) (but none of the stable ones)
may disappear under small perturbations.
We refer to Karlin and McGregor (1972a) for further application of

Principle III.

2. ApPLICATION OF PRINCIPLE II TO MULTINICHE MODELS
OF PARTIAL ASSORTATIVE MATING

Many organisms have polymorphic characters associated with preferences
for mating between similar individuals (assortative mating) or preference for
mating between dissimilar individuals (disassortment). Such assorting is known
to occur in certain bird, mammal (man included), insect, and plant populations.P
Known examples of a Mendelian factor affecting mating frequenci es include
those associated with pigment color or pattern (Mainardi, 1968; Parsons, 1962).
Scudo and Karlin (1969), Karlin and Scudo (1969), and Karlin (1968)

investigated through a series of genetic model s, the effects of partial assortative
mating on the equilibrium nature of populations incorporating certain ecological
factors and more of the mechanics of assortment. It was found in these works
that partial assortment for dominant autosomal genes will almost always have
an effect similar to disruptive selection or that of directed selection for a dominant
gene, and it will never produce stable polymorphism. In all these cases,
convergence to the pure recessive state occurs at a geometric rate while that to a
pure dominant state occurs more slowly at an algebraic rate. We review briefly
the results for two of the simpler models .
Let X, Y, Z denote the frequencies of AA, Aa and aa, respectively, and

assume A is dominant to a. Degrees of assortment in the phenotypes are
measured by two parameters: Ct(O Ct < I) will be the fraction of dominants
preferring to mate with their kinds, 13(0 13 < 1) that of recessive females
preferring their kind. The frequencies of the mating types are listed in the array
below (Table I) .

TABLE I

Frequencies of M at ing T ypes

Model I Model II

Mating type Assorting Random mating

AA X AA aX"/(X + V) aX " (I - a)X "
AA X Aa 2a.XV/(X + V) 2aXY 2(1 - a)XY
Aa X Aa aV 2/(X + V) aV " (I - ex) ¥"
AA X aa (2 - a - (3)XZ
Aa X aa (2 - " - (3)YZ
aa X aa f3Z f3Z" (I - (3)Z"

• Assortative mating occurs in plant populations by the nature of th e vector carr ier of
pollen, att racted by different pigment color of flower or sh ap e, etc.

- - - - - - - - - - -J _ .. - c - - - --:- - ---- · - , - -..; - • • • _- - _ - '-I .&. .



220 KARLIN AND MCGREGOR POLYMORPHISMS 221

An underlying postulate in Model I is that all females are fertilized while in
the second model th ere is a loss in fertility accompanying the effort of assortative
mating. For justification , relevance of these formulations, and further discussion
of other partial assortative models incorporating further ecological and genetic
factors, the reader is directed to the papers referred to previously.
The recurrence formulas connecting frequencies in successive generations

reduce to

niche. Thus in the last example, assortment for the dominant is stronger in one
niche while that for the recessive is stronger in the second niche. Assume slight
but positive migration between the two populations. Then a stable poly-
morphism can be attained. The validation of this assertion invokes Principle II.
(Note that only algebraic convergence takes place at some of the pure equilibria
in a single population.)

(3.2)

(3.1)

i = 1,2.

Xl' = Il(xl),
x2' = 12(x2),

so the mapping (3.1) has a fixed point (Yl ,Y2) in the square Q.
We now impose the condition of local stability for the fixed point (Yl ,Y2)'

and at first the discussion will be restricted to the case when there is convergence
at a geometric rate . For the applications of the simple kind discussed in this
section it would be satisfactory to assume that 11 and 12 are differentiable at YJ
and Y2', respectively, and

3. FORMAL THEOREMS AND PROOFS

These functions are assumed to be continuous and to satisfy 0 l i(e) 1
when 0 e 1, so that (3.1) defines a continuous mapping of the square

into itself. We assume the uncoupled systems have equilibrium frequencies
Yl ,Y2 , that is,

The next two sections are technical and record a mathematical expression
of the content of Principles I-II enunciated in Section 1. We develop the proofs
here to have th em available. The biologically oriented reader may pass over these
sections (but perhaps a cursory look at Section 3 is advisable) and consult the
discussion as well as the papers devoted to examples, implications and
applications of these theorems; see Karlin and McGregor (1971, 1972a).
In this section we discuss the theorems relevant to the simple case when there

are just two subsystems &'1 , &'2 each with a population comprised of two types
A , a and with simple migration coupling. Theorems 3.1 and 3.2 are prototypes
of more general theorems proved in Section 4.
Let Xl ' x2 be the frequencies of A in &'1' &'2 , respectively. For the uncoupled

systems let the recursion relations giving the frequencies Xl" x2' in the next
generation be

(2.2)

where p = X + p' = Z' + (2.1)

p = 1 _ a + V[(2 -; a)(l - a)] .

, (1 - aZ)
p = p 1 - 2aZ(1 _ Z) P = X + Yj2,

Z' = (1 - p)2 - 2a(1 - p)Z + 2aZ2
1 _ 2aZ(1 _ Z) (a = cx + (3) .

Model I

Model II

p' = p(l + cx ; f3 Z) ,

If initially Zo < t ,Po > Pfixation of A takes place at an algebraic rate, while if
Zo> !, Po < Pfixation of a occurs.
Thus in both th ese models (and in th e others as well), except for exceptional

relations among the parameters, partial assortment based on a dom inant effects
the population dynamics by causing either gene substitution or has effects
analogous to disruptive selection . On the other hand , there is much evidence
that polymorphic populations practicing partial assortment occur widely in
nature.
The general Principle II provides a basis for polymorphism with partial

assortment. Indeed, cons ider at least two repl ica populations of Model II or two
populations of Model I reproducing in two niches with parameters
£Xl ' f31(£Xl > (31) relevant at the first niche and cx2' f32(cx2 < (32) at the second

It follows on the basis of (2.1) that

(i) Where cx > f3, the only stable state for the population is that with
only dominants (X = 1, Y = Z = 0), convergence taking place at an algebraic
rate.

(ii) When cx < f3, a pure recessive population is the only stable state and
it is approached geometrically fast.

For Model II th ere exists a unique interior equ ilibrium (locally unstable)

11\ \ A/h o .. ""' ..... IJ ...k .......... ....1..., .. ...40 ... 1..1 ..... ...... _ .. _ c _ _ ..L .... 1 _ .... _ _
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Ifi (Xi ) - f i(Yi)1 C IXi - Yi I when IXi - Yi I < 8, i = 1,2. (3.3)

where 0 mi I. Then (3.4) is a continuous mapping of the square Q into
itself and is nearly the same as the mapping (3.1) if ml and m2 are small.

THEOREM 3.1. Let the continuous mapping (3.1) of the square Q into itself
satisfy the local stability condition (3.3). Then for eachpositive € with € < 8 the set

However, there are multivariate examples in which the analogous assumption
of differentiability is not satisfied. It is therefore preferable to requi re local
stab ility in more general form as follows. We assume there are constants 8, C
with 8 > 0, C < 1, such that

if = {(Xl ' X2); I Xi - Yi I S, i = I, 2}

In the above theorem the funct ions gi(XI , x2) depend linearly on the migration
parameters ml , m2 • It is not difficult to extend th e conclusions to cases where
thi s dep endence is more complicated, and to cases where ml and m2 are functions
of the frequency variables Xl and X2 • This and many other generalizations are
encompassed by the results in Section 4.
If the functions f i(X) are cont inuously differentiable and the local stability

cond ition (3.3) is replaced by the str onger assumption (3.2) then the above
theorem can be improved. In this case the familiar implicit function theorem
can be used to show that for all sufficiently small ml , m2 there is a neighborhood
of ( YI 'Y2) containing a fixed point of the mapping (3.4) which is unique and is
locally stable. For more detai ls see Section 4.
In many of the genetic models which appear to be weakly coupled complex

systems, Theorem 3.1 (and its generalizations) is not applicable because
condition (3.3) is not valid. In particular, this may occur if f ;'(Yi) = I for one
or more i. Such equilibria, which are nevertheless locally stable, occur in models
depicting the elimination of disadvantageous recessives, in assortative mating
systems, incompatibility patterns of mating, etc. In these examples the equi-
librium values Yi usually determine boundary points (pure states) and the
stab ility is of a more delicat e nature. These boundary equilibrium points do not
represent polymorphism in the simple subsystems but may combine to give a
full polymorphism for th e complex system . Our aim will be to show that under
suitable conditions the equilibrium point ( YI ' Y2) has a small neighborhood / .
such that if th e initial frequency vector (Xl ' x2) of the weakly coupled system
is in V, then in all subsequent generations th e frequency vector remains in I".
In this way we establish th e existence of what is, from the practical viewpoint,
a balanced polymorphism.
The argument used in the proof for this more general and more delicate case

involves the concept of a Liapunov function for a mapping. Let if be a bounded
set in a finite-dimensional Euclidean space and consider a continuous mapping
p -- P' = f(P) of the set C into itself. A real-valued func tion L(P) defined for
P in C is called a Liapunov function for the mapping if L(P) is nonnegative,
continuous and L(f(P» L(P) with equality only whenf(P ) = P. It is known
that if the mapping has a set !/ of fixed points such th at for each P in 6' the
sequence of iterates fl(P) = f(P) , f2(P) = f(f(P)) , fa(P ) = f 2(f(P)),...
converges to some point in !/, th en in the neighbo rh ood of any locally stable
fixed point the mapping usually has a local Liapunov functi on. As an example,
there are some well-known simple genet ic models which have a fitness function
W which increases from one generation to the next. If th en c is a suitably large
constant, L = c - W is a Liapunov function. As another example, consider the
above system (3.1) under condition (3.3). The set

(3.4)
Xl' = (1 - ml)fl(xI ) +mI!2(x2) == gl(XI , x2),
x2' = mdl(xI ) + (1 - m2)f2(x2) == g2(XI , x2),

Igl(XI , x2) - YI I + Ig2(XI , x2) - Y2 I
(1 - ml) If l (XI) - YI I+ (1 - m2) If 2(X2) - Y2 1+ ml If2(X2) - YI I
+ m2 Ifl(xI ) - Y21
If l (XI) - YII + If2(X2) - Y2 1+ ml + m2
C[ IXl - YI I+ IX2 - Y2 I] + ml + m2
C€+ml +m2

This cond ition implies that (YI ' Y2) is a locally stable fixed point of (3.1) since
if € < 8 and the initial frequencies (Xl ' x2) satisfy IXl - YI I + I x2 - Y2 I < €

then the frequencies (Xl', x2' ) in the next generation will also sat isfy
IXl' - YI I+ I x2' - Y2 I < € as a result of (3.3).
Now suppose the two subsystems f!l'l , f!l'2 are migration coupl ed in such a

way that the recu rsion relations for the resultant complex system are

Q. = {(Xl ' X2); (Xl' X2) EQ, IXl - YI I+ IX2 - Y2 I €}

is sent into itself by the mapping (3.4) if ml + m2 < (1 - C)f:.

Proof. If (Xl ' X2) EQ. then

which is <€ if ml + m2 < (1 - C)€. Thus (Xl', x2' ) E Q. and the result is
proved.
The theorem shows that when ml and m2 are sufficiently small then the small

domain Q. is a "domain of stability" for the coupledsystem. That there is actually
at leastonefixed point of the mapping (3.4) inQ. is assured by Brouwer'sfixed-point
theorem, which asserts, in particular, that in a finite-dimensional space a
continuous map of a closed convex set into itself always has a fixed point.

I
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is mapped into itself by (3.1) and the function For 0 > 0 define

is a (local) Liapunov function. As a final example, consider (3.1) with the
specific functions

We choose 0 so small that V(O) C U. This is possible because L is continuous,
nonnegative, and zero only at (Yl' Y2) ' Then V(O) is a compact set which
contains an open neighborhood of (Yl' Y2) ' Let 0' be the maximum value
achieved on V(O) by the continuous function L(fl(Xl) , f2(X2», Since by (3.5)

In this case Yl = 0; Y2 = 1 is a fixed point for the mapping of the square into
itself. Condition (3.3) is not satisfied because N(O) = N(l) = 1. Nevertheless
there is a (global) Liapunov function

then (Zl', Z2') E V(o).
Let m = £/4 and suppose ml < m, m2 < m. Then

Igl(Xl , x2) - fl(Xl)!+ Ig2(Xl , x2) - f 2(X2)!

.::::;; ml If2(X2) - fl(Xl)I+ m2 Ifl(Xl) - f2(X2)!

.::::;; 2(ml + m2) < 4m = e,

at each point (Xl' x2) in V(8) except (Yl ,Y2)' it follows that 0' < 8. Thus if
(Xl ' X2) E V(8) then (fl(xl),f2(X2» E V(O'), where 8' < 8. It is clear that V(O') •
is contained in the interior of V(O) and since V(O') is compact there is a positive
E > 0 such that if (Zl , Z2) E V(8') and (Zl', Z2') satisfies

I Zl' - Zl I+ IZ2' - Z2 I < £

(3.5)

if Xi =1= Y i ,

f i(Xi) maps iffi into itself,

and it is easily verified that (Yl ,Y2) is locally stable.
The next theorem again deals with the continuous mappings (3.1) and (3.4)

of the square Q into itself. The fixed point (Yl 'Y2) of (3.1) is assume to be
locally stable in the sense that there exist neighborhoods @"l of Yl and tS; of Y2
and Liapunov functions Ll(Xl), L2(X2) defined on and tS; , respectively, which
are continuous and such that

if Xi =1= Yi •

Under these conditions L(x1 , x2) = Ll(Xl) +L2(X2) is a local Liapunov function
for the mapping (3.2).

Therefore (gl(Xl , x2), g2(Xl , x2» is in V(O) whenever (fl(Xl),f2(X2» is in V(O'),
hence whenever (Xl' X2) is in V(8). With V = V(8) the theorem is proved.

THEOREM 3.2. Let the fixed point (Yl 'Y2) of the continuous mapping (3.1)
belocally stablein the sense that there are localLiapunou functionsLl ,L2satisfying
(3.5). Then, given any neighborhood U of (Yl ,Y2), there is a neighborhood V of
(Yl 'Y2) with V C U, and a positive m > 0 such that if ml < m, m2 < m then
themapping (3.4) sends V into itself.

Thus the arbitrarily small neighborhood U contains a smaller neighborhood
V such that if ml , m2 are sufficiently small and if the initial frequency vector
for system (3.4) is in V then the frequency vector in all subsequent generations
remains in V.

Proof. Let U be a neighborhood of (Yl ,Y2) and let

4. THEOREMS AND PROOFS (CONTINUED)

In thi s section we present results which are generalizations of the th eorems
of Section 3 and discuss some auxiliary matters in greater detail. We require
theorems analogous to Theorems 3.1 and 3.2 but applicable to the case of many
subsystems, rather than just two subsystems. Moreover, it is necessary to treat
cases where the individual subsystems may have greater complexity, so that the
state of each subsystem must be described by a frequency vector rather than a
single frequency. We also wish to consider more general kinds of coupling
than the simple migration coupling and even in the case of migration coupling
it is desirable to allow migration rates mij which are themselves functions of
the frequency variables. In some problems one has a complex system in which
the subsystems are already coupled in some manner, and one wishes to analyze
the effects of an additional mode of coupling, or of a perturbation in the coupling.

T I 6· \ "
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With this variety of applications in mind we shall consider a domain Q of
n-dimensional Euclidean space R", and certain continuous mappings of Q into
itself. We assume that Q is a compact convex set. Vectors in R" will be denoted
by x, y, Z, etc., so that for example x = (Xl' x2 , • .• , xn ) . Continuous functions
which map Q into itself will be denoted by f(x), g(x), etc. In more extended
notation we should write

In the applications the coupling function r(x) depends on one or more
parameters ml , ... , mk which describe migration rates, recombination fractions,
outcrossing fractions , epistatic effects, etc., and r(x) becomes small as the
parameters approach suitable limiting values.

4.1. Let (4.1) and (4.2) be continuous mappings of the set Q into
\ itself and let y be a fixed point of (4.1). Suppose that for some norm and some
\ S > 0 the set

We shall make use of a norm II x II for vectors x = (Xl'"'' x n ) in R", with the
usual properties

V(S) = {x; II x - y II S} n Q

satisfies the condition

IIf(x) - y II c II x - y II·

(i) II x II 0, II x II = 0 only if x = 0,
(ii) II AX II = IA III x II for any number A,
(iii) II x + y II II x II + II y II ·

There are many choices for such a norm, and we shall choose one adapted to
the particular problem at hand. In any case, II x II is a continuous function of x
and the sets {x; II x II t-} are compact convex sets.
We shall consider two continuous mappings

of Q into itself, where (4.1a) has a locally stable fixed point y in Q, and where
the perturbation or coupling term r(x) = g(x) - f(x) is small in a sense to be
specified.
It is convenient for applications and to expedite the analysis to slightly

strengthen the concept of a locally stable fixed point as follows: The fixed point
y off is said to be locally stable if for every y-neighborhood U there is a neighborhood

• V such that y EVe U and

(4.3)

(4.4)

Ilf(x) - y II c II x - y II,

max II r(x)11< (1 - c)S.
.,eV(8)

impliesx E V(S)

Proof of Theorem 4.1. If x E V(S) then

Consequently g(x) E V(S), that is, (4.2) maps V(S) into itself. Since V(S) is a
compact convex set, the existence of a fixed point of (4.2) in V(S) is insured by
Brouwer's theorem. This completes the proof.
Condition (4.3) can only be satisfied if the norm is related to the mapping

(4.1) in a suitable way. Fortunately (4.3) does not involve the perturbing term
r(x). We next indicate some criteria under which there wiJI be a norm satisfying
(4.3).

Remark. The condition (4.3), analogous to (3.3) in Section 3, asserts that
the fixed point y of (4.1) is locally stable with geometric rate of convergence.
However the hypotheses of the theorem are not strong enough to guarantee
that any fixed point of (4.2) in V(S) has the same property. On the other hand,
it assures that the small region V(S) is stable under the mapping (4.2). The value
of the theorem lies in the fact that the weak hypotheses are more likely to be
valid and, in any case, may be easier to verify. A result with stronger hypotheses
and stronger conclusions follows below.
The "smallness condition" (4.4) is satisfied in the applications by imposing

restrictions on the parameters.

II g(x) - y II = 11[f(x) - y] + r(x)1I
II f (x) - y II + [I r(x)11

< c II x - y II + (1 - c)S S.

where 0 c < 1. Then (4.2) maps V(S) into itself and has a fixed point in V(S)
provided

i

L

(*)

(4.2)

(4.1)

f(fl) C V

x' =f(x)

x' = g(x) = f(x) + r(x)

and

(II = closure of V).
The usual definition of local stability asserts merely f(V) C V. A simple case

where (*) is satisfied is in the following context.
If there exists a local Liapunov function for f at the point y (see also later

Theorem 4.3) then y is a locally stable fixed point of f. In view of Lemma 4.2
we will see that this is the case provided there exists c, 0 c < 1 and € > 0
such that II x - y II < € implies
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II f' ( y ) . u II a' II u II

over 0 t 1 (since the line segment joining y to x lies in the convex set Q).
This yields

for every vector u. Choose C so a' < C < 1. Then by continuity of the gradient
and of the norm there is a number S > 0 such that

(4.5)if II z - YII S.IIf'(z)'ull

(dJdt)f(y + t(x - y)) = f'(y + t(x - y)) . (x - y)

f(x) - fey) = rf'(y + t(x - y)) . (x - y) dt
o

If x E Q and II x - y II S we can integrate both members of the identity

LEMMA 4.2. If the mapping f(x) has, in some neighborhood of the fixed point
y, continuous first-order partial derivatives, and if all eigenvalues Aof the gradient
matrix1'( y) satisfy IAI < 1, then there is a norm and numbersS > 0, 0 C < 1
such that condition (4.3) holds.

Proof. By Lemma 4.1 there is a norm and a number a', 0 a' < 1
satisfying

i = 1,... , n,

LEMMA 4.1. Let A be an n X n real or complex matrix such that every root A
of the characteristic polynomial of A satisfies IAI a. Then, given a'. a < a',
there is a norm such that for every vector x

Remark. This and the following lemma are quite familiar to most mathe-
maticians concerned with dynamical systems.

Proof. It is clearly sufficient to consider the case when the underlying
vector space is the n-dimensional complex space c-, because a norm on C"
induces a norm on the embedded R" , Over c» the matrix A is similar to a
matrix in Jordan canonical form. That is, there is a basis for C" consisting of
vectors z(l) , • •• , z(n) such that

II Ax II a' II x II·

n
X = L: e.zl. ).

.=1

where the A. are eigenvalues of A and each S. is either 0 or 1 and SI = O. Any
vector x has a unique representation

With p > 1 we define the norm

n

II x II = L: I e. I p'.
t = 1

and hence by (4.5)

IIf(x) - y II rC II x - y II dt = C II x - y I!,
o

depending on a parameter e. The parameter e is assumed to range over some
set H in a k-dimensional Euclidean space with a limit point eo E H such that

which completes the proof.
Theorem 4.1 asserts the existence of at least one fixed point of (4.2) in V(S).

For many cases of practical interest the implicit function theorem of advanced
calculus can be used to show that the fixed point is unique. Consider a family
of continuous mappings

Now for any x
n n-I

Ax = L: \e.z1tl + L: SHlei+lZ( t)
i -I . = 1

so

n n-l I i: I
II Ax II L: IA. I . I e. I p' + L: .2i±L pHI

. =1 i-I P

a II x II + II x II = (a + II x II·

x' = f(x, e) (4.6)

The conclusion follows if p > (a' - a)-I.
If a mapping f(x) has first-order partial derivatives, then the matrix of first-

order partial derivatives

f'(x) = [ of.(x) ]
ox; i .;-I.....n

is called the gradient of f(x).

f(x, eo) = f(x),

that is, (4.6) reduces to (4.1) for e = eo .

/]

HEOREM 4.2. Suppose that for each eE H the mapping (4.6) is a continuous
mapping of the compact convex set Q into itself. Let y E Q be a solution of
y = fey, eo)· Assume the family of mappings (4.6) are defined and have partial

653/3/2-8
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THEOREM 4.3. Let (4.1) and (4.2) be continuous maps ofQ into itself and let y
be a fixed point of (4 .1). Suppose there is a neighborhood Iff of y and a real-valued
function L(x) defined and continuous on Iff n Q such that

derivatives with respect to the variables Xl"'" Xn for each fJ E H and for all X in a
Iff in s-, y as an interior point. The partial derivatives are

assumed to be jointly continuous in the variables X and fJ. If all eigenvalues ,\ of the
gradient f'(y) satisfy 1,\ I < 1, then the conclusions of Theorem 4.1 hold, the
fixed point y(fJ) in V(8) will be unique when fJ is sufficiently close to fJo ' and all
eigenvalues ,\ of the gradient 1'( y(fJ), fJ) will satisfy I ,\ I < 1.

Remark. When y is a .boundary point of Q the hypotheses of the theorem
require that the and their partial derivatives be defined in
a full neighborhood of the fixed point y, and so at points outside of Q. In the
applications this is usually the case, in fact the mapping functions are frequently
rational functions of the coordinates. However, it is necessary to verify carefully
the of the partial derivatives at y even in these applications.

Proof. Straightforward application of the implicit function theorem leads
to the conclusion that when fJ is sufficiently cose to fJo there is a small neighbor-
hood of y containing a unique fixed point y(fJ) and that the assertion concerning
the gradient1'( y(fJ), fJ) will hold. On the other hand the hypotheses of Theorem
4.1 hold so for all small 8 > 0 there is a fixed point in V(8) . This would lead to a
contradiction unless y(fJ) E V(8) CQ and there is no other fixed point in V(8).
The main perturbation theorem is next and involves local stability via the

existence of local Liapunov functions. Proof. Applying the implicit function theorem as in Theorem 4.2 we deduce
the existence of exactly one fixed point Zi in the neighborhood of each Yi .
(If Yi is locally unstable then Zi could move to V - Q, i.e., outside Q.) On the
other hand, if Y i is locally stable then the analysis of Theorem 4.1 establishes
Zi E Q. The concordant stability nature of Zi associated with Y i follows from
, elementary continuity considerations. It remains to show that g(x) admits no
, other fixed points in Q aside from Zl , .• . , Zk . To this end, note that

i = 1, 2,...,k.for all x # Yi ,

L(f(x» on the compact set V(8). As in Section 3 we have 8' < 8. Choose £ :> Q
so that if Z E V(8') and II Z - z' II < £ then z' E V(8) . Now if x E F(8) then
f(x) E V(8') so g(x) = f(x) + r(x) is in V(8) provided (4.8) is satisfied.
It should be noted that if the sets V(8) are also convex then (4.2) will have a

fixed point in V(8).
We close the developments with a more precise formulation of Principle III

(cf. Section 1).

( - - T HEOREM 4.4. Let f(x) be a continuously differentiable mapping of a compact

)
' convex set Q C En (Euclidean n space) into itself admitting a finite number of fixed
, pointsII 'l2 ,... , lk . Assume that f(x) is actually defined in an openset V containing
I Q. Suppose that all eigenvalues ,\ of the gradient matrix f'(li) at eachYi satisfy
! .I ,\ I # 1. And suppose the mapping g(x) = f(x) + r(x) sends Q into itself, tcherr
I r(x) is continuously differentiable on V with max(1I r(x) 11+ II "(x)11) £ sufficiently
i small. Then g(x) admits at most k fixed points Zl , . .. , Zk in Q with each s, in a
; neighborhoodYi . Moreover, tlYi is locally stable for f(x) then Zi in Q certainly

exists in a neighborhoodof Yi and is locally stablefor g(x) .Wheny is locally unstable
(i.e., if at least one eigenoalue X ofj'(l;) has 1,\ I > I) then if Zj exists in Q, it is
also locally unstable.j

i'....

(4.7)
L(y) = 0, L(x) > ° if x # y,

f(x) maps Iff into itself,
L(f(x» < L(x) if x # y.

V(8) = {x, x E Iff n Q, L(x) 8}.

(Here we use the usual Euclidean norm.)

Proof. For 8 > 0 define

W = WI U ... U W r , Wi of v,

Thus a sufficiently small neighborhood W of the fixed-point set can be chosen
satisfying

min.,¢w - II 8 > 0. The Wi can be further specified small enough
so that g(x) has only the fixed points Zl , ... , Zk in W, with the inequalitv
£ = maxXE.Q II r(x) 1I < 8 fulfilled. Clearly minx¢w II - II :;::, 8 - £ > 0 and
the proof of the theorem is complete.
A set of striking applications of Theorem 4.4 to multiniche selection models

is set forth in Karlin and McGregor (1972a).

(4.8)max II r(x)ll < E.
XEV

Then, given any neighborhood V of y there is a neighborhood V of y with V C V,
I and a positive number E, such that (4 .2) maps V into itself provided

L

With 8 chosen so small that V(8) C V, V(8) is compact and contains an open
(relative) neighborhood of y. Let 8' be the maximum of the continuous function

FURTHER EXTENSIONS. The conditions of Theorems 4.1-4.4 involve only
estimates of the crudest kind on the remainder term r(x). Consequently the
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5. DISCUSSION

theorems and the proofs remain valid with only slight changes if the remainder
term r is allowed to depend on the frequencies in the present generation and
one or more of the preceding generations. Suppose the initial frequency in the
complex system is x(l) and the frequency in the k-th generation is X(k). If the
recursion law is of the form

Similar modifications can be made to cover the case when the remainder term
depends on the entire past history of the system.
Finally, instead of dealing with fixed points and perturbations of the mapping

in the neighborhood of these points the whole theory can be extended to treat
locally stable invariant curves or manifolds. Then appropriate perturbations of
the mapping f along the lines indicated previously assure the existence of
nearby invariant manifolds for the mapping g.

1. The abundance of polymorphic phenomena is well established in
natural and experimental populations. Uncovering electrophoretic variants
for several enzymes in different organisms has in recent years been a common
laboratory practice.
In explaining polymorphisms and clines, emphasis is usually given to changes

in selective factors between and within environments. It is also widely recognized
that in many natural situations migration may play an important, even a
dominant, role. The following theme recurs in many works concerned with
population genetics: "The ongoing process of evolution probably requires
adjustment to a constantly varying environment, and of the combination of
characteristics from the different populations that survive. Given an environ-
mental flux, a necessary and sufficient condition for genetic change is availability
in the population of genetic variants." Important sources of variability in natural
population can he genes and gene complexes transferred from other populations.
Also widely recognized is that differentiated populations retain the ability

for exchange of genetic material. Put in a more descriptive language, spacial
and temporal variation in environment is considered to be highly involved in the
maintenance of genetic variation in population (Darlington, 1957; Wright, 1968,
1969; Dobzhansky, 1967).
We have attempted in this paper to partly provide a quantitative basis for these

concepts by giving a methodology for analyzing a mixture of genetic systems
and niches influenced by a variety of pressures and mating patterms. We find
that stable polymorphisms in the total system (composed of several subsystems)
can be maintained as a result of one or more main effects in each system with
slight interaction and/or coupling persisting among all the subsystems. Of
course, stable polymorphism is known to occur also in some cases where
interaction among all the subsystems is quite strong and not slight.

2. In most studies of migration selection balance it is assumed that in one
niche one homozygote carries a selective advantage while in a second niche an
alternate homozygote is selectively superior [e.g., see Moran (1962, Chapter 8),
Maynard Smith (1966), Clarke (1966)]. An application of Principle I [Karlin
and McGregor (1972a)] demonstrates that two or more populations individually
subject to __selection pressures would separately
gene flow connects the pgj>\!lations, then a stable polymorphism wi.dLl!!l.types
persisting can be attained. Note that, for a single-niche situation subject to
disruptive selection, only fixation is possible. On the other hand, a multiniche
(at least two niches) version of the same model with disruptive selection in
force in each niche now provides possibilities both of fixation (monomor-
phism) and polymorphism and which occurs depends on the nature of the
initial compositions of the subpopulations or factors other than the forces of
natural selection.
Determined from theoretical study, some genetic models of selfing and/or

partial assortative mating for dominant autosomal traits bear consequences similar
to those of disruptive selection or those of directed selection for a dominant
gene, precluding the existence of stable polymorphism in these situations
[see Scudo and Karlin (1969) or Karlin (1968)]. On the other hand, there is
positive evidence that natural polymorphic populations (especialy certain bird
populations) practice partial assortative mating [e.g., see Parsons (1962)].
Presumably, selfing or assortative mating arises in response to selection pressures
for immediate fitness to special environments. We have proved in Section 2 by
invoking Principle I, that two or more replica populations subject to the same
partial assortative mating behavior with slight gene flow connecting the systems
can maintain a stable polymorphism.

3. It is important to emphasize that the validity of these polymorphisms
requires that the migration rates among the distinct systems be very small
although some forms of migration selection (e.g., migration to certain niches

(4.9)

max II r(x, z)11 < (1 - c)8
xeV,zeV

max II r(x, z)!! < E.
xeV,zeV

X(k+l) = f(X(kl) + r(x(kl, X(k-l))

then in Theorem 4.1 we must replace condition (4.4) by the condition

and in Theorem 4.3 we must replace Condition (4.8) by the condition



favoring cert ain genotypes) may be in force. When migration rates are not
small then the various systems (or niches) blend and the ult imate effects of all
the selection parameters are complex. On the other hand , when the migration
rates are sufficiently small th en the selection effects in each niche strongly
dominate in their individual niche while the remaining niches help to keep a
slight flow of alternative genotypes and thereby maintain a balance manifesting
a global stable polymorphism.

4. Many of the stable polymorph isms established by virtue of th e
principles of Section 1 for multiniche selection (natural or sexual) balance have
th e propert y that a preponderance of one homozygote is maintained in one
niche while a preponderance of an alternative homozygote exists in a second
niche and so on for the other niches. It is reasonable to speculate th at some
forms of habitat selection confer an advantage, say on BB in niche 2, AA is
favored in niche 1 while the heterozygote (or hybrid typ e) bears marked
disadvantage to both homozygotes in each of the niches and yet a global
balance may be preserved.
Aside from the kinds of polymorphisms described above, there also exists

th e possibility of stable global fixations. What evolves may dep end decisively
on the initial composition of the various subpopulations. Founder effects,
sampling and statistical fluctu ation, and changing environmental conditions
may be important original forces causing a local population to be mostly of
one type .

To sum up the above discussion we obtain the general dictum to the effect that
almost all selection models bear possibilities of stable polymorphism by spreading
spatially the selection effects (i.e., to several niches) and keeping the interaction
between niches slight .

5. The well-studied example of vanation of shell color and banding
pattern s in the' land snai ls, Cepaea nemoralis and Cepaea hortensis is reviewed
in Ford (1964). The genetics and selection forces for these tra its are reasonably
well understood. The distribution and dat a on th ese populations underscore
the phenomena of " area effects" where two or more populations with different
frequencies of color and banding patterns are found in an app arently uniform
habitat. Moreover, relatively small numbers of intermediate gene frequencies
are observed among adjacent populations. Explanations and interpretation of
this phenomena have been put forward in terms of the concepts of adaptability
and th e founder principle. We call attention to Principles I-III which are clearly
relevant. We have explained earlier how the founder's principle combined
with forms of disruptive selection could bring evolution of coadapted gene
complexes and an accompanying reduction of fitness and frequency of the
heterozygote.

6. It is important to realize th at the nature of local stab ility for the pure
equilibr ia, for example, (algebraic versus) geometric local convergence in the

I)J: w} . sepa rate niches, is irrelevant to the main conclusions of Princ iples I and II.
j _ Examples treating multiniche selection models usually involve geometric
rv-r l;Jr- convergence while for the single-niche assortative ma ting model of Section 2
wQ- the rate of fixation to the pure equilibria is algeb raic. Generally, forms of sexual

selection lead to algebra ic rates of fixation while effects of natura l selection bring
geometric conve rgen ce. Ou r general principles apply in both situations.
However, there is a difference of order of magni tude allowed for the migration
parameters in the two cases yielding polymorph ism . When algebraic rather
th an geometric convergence is operating in the correspond ing one-niche model
at a specified equilibrium, it manifestly takes longer to fix in such a population. .
In th is circumstance, it can be established th at th e orde r of migration permitted
assuri ng stable polymorphism is at least the squa re root of that where geometric
convergence is operating. Therefore, more possibil ities of polymorphism arise
with algebraic convergence than in the case of geometric convergence. In
particular, migration rates can be larger in the cases of assortative mating
producing polymorphi sm than in the cases where disruptive selection is
operating.

7. An int erest ing consequence of Principle I concerns the problem of the
minimum number of niches required to guarant ee the existence of p types in a
stable polymorphic state. Assuming that sexual or natural selection operating
in each niche fixes a different type, then a minimum of p niches with slight
mig ration flow between them can maintain a global stable polymorphism with
all p types represented in each subsystem (see Sect ion I).
When it is possibl e to have more than one type kept in a stable state in some

or several niches then th e min imum requir ed number of niches to maintain
all p types is diminished from p. There is some similari ty between this result and
the Gause exclusion princ iple of ecology.
Ou r principle of Section 1 has, pe rhaps, two striking general qualitative

implications :

(a) Systems with simple equilibria when combined with slight interactions
(e.g. , gene flow) among th em produce a complex system with a stable equilibria
involving several types possible.
(b) Complex systems when combined with slight migrati on between them

produce even more complex systems with more possibilities and representations
of stable polymorphisms.

The last asserti on is consistent with the "tenet" that complex systems tend
to be more stable with th e degree of stabil ity increasing with the extent of
complexity. However , th ere may be a point of dimi nish ing return as to the
number of nich es needed to maint ain the desired types.
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readers of the journal. Such notices include announcements of meetings and
colloquia devoted to population theory, information regarding the publication
of lecture notes or of abstracts of papers presented at meetings, and of notices
of such other scientific matters as may be approved by the editors . Individuals
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