
Reprinted from THEORETICAL POPULATION BIOLOGY 
All Rights Reserved by Academic Press, New York and London 

Vol.1, No.1 May 197() 
Printed in Belgium 

On the Evolutionary Effect of Recombination* 

ILAN ESHEL 

Department of Mathematics, Tel Aviv University 

AND 

MARCUS W. FELDMAN 

Department of Biology, Stanford University, Stanford, California 94305 

Received October 20, 1969 

1. INTRODUCTION 

Crow and Kimura (1965) constructed a model to quantify the arguments 
originally due to Fisher (1930) and Muller (1932) that recombination accelerates 
evolution because it enables mutations originally occurring in distinct individuals 
to be combined in a single descendent. The model contained the assumption 
that even though the population be large, the mutation rate should be so small 
that the double mutant may not exist in the same individual (see, also, Crow and 
Kimura (1969». In particular, Crow and Kimura concluded that the advantage 
conferred by recombination is greatest when the population is large. 

Maynard Smith (1968) contested these findings by producing a "counter
example." This consisted of a deterministic two locus model with multiplicative 
viabilities in which, at any time, the frequency of the double mutant is the same 
with recombination as without it. In this article, we also treat the completely 
deterministic model, that is, an effectively infinite population so that chromosome 
frequencies suffice to describe the population. However, we do not assume that 
the relative fitness of the double mutant is exactly equal to the product of the 
relative fitnesses of the single mutants. We consider the case of two loci so that 
initially the population can be thought of as being all AB. Mutation occurs 
from A to a and from B to b. Fitnesses of the mutant genotypes are normalized 
to the original type. 

We first show that if the mutations are favorable and the double mutant is 
fitter than expected under simple multiplicity, then the frequency of the double 
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mutant in the asexual case(i.e., without recombination) will always be larger than 
that when recombination occurs. Our second result concerns the case in which 
the single mutations are deleterious, but not worse than semilethal while the 
double mutant is advantageous but not too advantageous. If this is so and 
mutation is sufficiently rare, we prove that when recombination occurs, the 
frequency of the double mutant cannot increase to fixation. In fact, the frequency 
of this double mutant cannot progress beyond a number which is of the order of 
the mutation rate. On the other hand, it is obvious that without recombination 
under the above conditions, .the double mutant becomes fixed. 

These results are quite surprising since it is the prevalent belief that the 
advantage of recombination is principally to hasten the appearance and increase 
the frequency of double mutants which are favorable and cooperative in the 
above sense. However, it should be stressed that our results pertain to the case of 
an infinitely large random mating population which while being a frequently 
observed mathematical phenomenon is perhaps rather rare in nature. In the 
discussion, we take up the meaning of these restrictions in light of the ubiquity 
and, hence, presumably, the advantage of recombination. It is our feeling that 
previous explanations are inadequate, and deeper thinking is necessary to explain 
this advantage. 

2. THE MODEL 

Consider a population of AB individuals such that A can mutate to a with 
chance IL per generation and B can mutate to b with chance IL per generation so 
that AB mutates to ab with chance 1L2 per generation. The relative fitnesses of the 
types AB, Ab, aB, and ab are assumed to be 1, G2' G2' and Gl' respectively. 
Initially, there are only AB individuals in the populatIOn. Following the first 
occurrence of mutation, we consider the evolution of the population in two ways. 
In the first, the population reproduces asexually so that the double mutant can 
only be formed by mutation. Here we let Xl , X 2 , Xa , X4 be the frequencies of 
ab, aB, Ab, and AB, respectively. In the second reproduction is "sexual" in the 
sense that recombination occurs. (This is the only sense in which the word 
sexual will be used.) The frequencies of ab, aB, Ab, AB, in this case, are Yl 'Y2 , 
Ya, and Y4 , respectively. We are interested in the relation between Xl and Yl 
as time passes for various values of the selection parameters Gl and G2 • 

3. REsULTS 

Case (a). 1 < G22 < Gl • 

This might be the case when ab is a favorable combination of favorable 
mutants. We call this the super-multiplicative case. When this holds, after the 
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first generation the frequency Xl of the double mutant in the asexual population 
is always greater than Y1' that in the sexual population. The order of the 
mutation, selection and recombination events is immaterial. The proof is given 
in Section 4. 

Case (b). 1 < <12 < <11 < <122. 

Here, after the first generation, the sexual population contains more double 
mutants than the asexual population. See Remark 2 to Section 4. 

Case (c). (i) 0"1> 1 ><12> <122> (1 - r)O"l' 
(ii) 0"2 > t. 

Assume that selection occurs after recombination which follows mutation. 
Then there exists /Lo and a region G specified by 

G - II -Y 4 ~ 8(/Lo) 
- Y1 ~ KY22 

with 8 > 0 and 0 < K < 00, such that if /L < /Lo , then after the first generation 
the population never escapes from G. 8 may be chosen as small as we please 
provided /Lo is sufficiently small. The proof of this result is given in Section 5. 

4. ANALYSIS OF CASE (a) 1 < <122 < <11 

Since the fitnesses of Ab and aB are equal, and the population is initially all 
AB, we may write, at any time, X 2 = xa and Y2 = Ya . If the superscript t denotes 
the generation number, then we prove x~t) > y~t) for t > 1. Here, a generation 
refers to the occurrence of the three events: mutation, selection, and recombina
tion in any order. This strengthens the findings of Maynard Smith, that if 
<11 = <122, then x~t) = y~t). Where there is no ambiguity, the generation number 
will be suppressed. Let r be the recombination fraction in the sexual case, and 
in the usual notation let DI/ = Y1Y4 - Y22 be the linkage disequilibrium function 
for the sexual case. Define u'" = X1/X2 ' ul/ = Y1/Y2 and write p", = Xl + Xi , 

PII = Y1 + Y2 for the gene frequencies of the mutants in the asexual and sexual 
case,s, respectively. Obviously, 

Mter the first occurrence of mutation, 

Xl = /L2 = Y1' 

so that at this stage 

U'" = /L/(1 - /L) = ul/ 
p", ,= /L= 'PII 
D,=O. 

(1) 

\ 
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Now, if recombination occurs in the sexual case, since D'II = 0, there will be 
no change in the relations (3). If selection then occurs 

but 

On the other hand, if selection occurred first, then recombination, we would have, 
since D > 0 after selection, 

and 

P"'=P'II 

while recombination simply reduces D in (4) by the factor (I - r). 
Thus, after the first cycle commencing with mutation and followed by 

recombination and selection, we conclude that 

and (4) 

Let us assume that at a given phase of evolution the relations 

(5) 

are true. We now prove that after mutation, recombination, and selection occur 
(in any order), the relations 

p~+l) > p~+l), (6) 

hold. To this end, denote by a superscript, m, a variable following mutation, 
by a superscript,..!i. a variable following recombination, and a superscript, s, 
a vari~ble following selection. -

(i) Assuming (5) to hold, we show that it remains true after the occurrence 
of mutation. After mutation, we have 

Yim) = Y1 + 2/LY2 + /L2y, = (1 - /L2) Y1 + 2/L(l - /L) Y2 + /L2 

y~m) = y~m) = (1 - /L)Y2 + /L(l - /L)Y, = (I - /L)[/L - /LY1 + (l - 2/L)Y2] (7) 

Yim) = (1 - /L)2 Y, = (1 - /L)2 (1 - 2Y2 - y
1
). 
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Similar relations hold with x~m) and Xi substituted for y~m) and Yi throughout 
(7) (i = 1,2, 3,4). Then, an easy calculation shows 

Further, 

Using (I) in (7) we obtain 

u(m) _ (I - /k2
) p"u" + 2/k(1 - /k) P" + /k2(1 + /k) 

" - (I - /k)[/k(1 + /k) - /kP"u" + (1 - 2/k)p,,] 

= -1-1 [/k2 + (1 - /k2)p,,] U" + 2/k(1 - /k) P" + /k2 ! 
1 - /k /k(1 - p,,) U" + (I - 2/k)p" + /k 

= im(P" ,u"'), say. 

(8) 

The functionim(p" , u,,) is a linear fractional function in each argument and since 

[p.2 + (1 - /k2) p,,][/k + (I - 2/k) p,,] - [p.2 + 2/k(1 - /k) p,,] /k(1 - p,,) 

= (I - ,.,.)2p,,2 + ,.,.(1 - f.4)p" > 0, 

we have f)im/f)u" > 0. 
Again, we may write 

j, ( ) = _I _ ! [(1 - /k2) U" + 2/k(1 - /k)] P" + /k2
(1 + u"') ! 

m p", , u'" 1 _ f.4 [1 - 2/k - /ku,,} P" + /k(1 + u,,) 

as a linear fractional function of p", . Since 

[(I - /k2) u" + 2/k(1 - /k)] ,.,.(1 + u,,) - [I - 2/k - /ku",] /k2(1 + u,,) 

l = /k(1 + u,,)(/k + u"') > 0, 

we have f)im/f)p", > 0. Since p~t) ~ p~t), u~t) ~ u~), it is now clear that 

u~m) = im(p", , u,,) ~ im(p" ,ull ) = u~m). (9) 

--- (ii) Recombination acts on the sexual population only. Denoting by the 
superscript r the value of a variable after recombination, we see that 

D';) = (I - r) DlI > 0, 

p~) = Pv ~P:r;' 
(10) 

1 
! 

i 
i 

l 

l 
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Further, since D > 0, 

Thus, recombination does not affect the truth of (5) but, indeed, changes 
ull ~ U'" to a strict inequality. 

(iii) Now assume p", ~ P'U, U'" > U'U' and D'U is positive. We show that 
following selection (6) is true. Variables following selection are denoted by the 
superscript so that 

Also, 

u(s) = alxl = al u > (11 U = u(S) 
. " (12X2 (12" a2 'U ,,' 

Now we have, using(I), 

p( ,) = alxl + a2x2 
" (1lXl + 2a2x2 + I - 2X2 - Xl 

alP",u", + a2P", f ( ) (11) 
[(al - 1) p", + 1] u" + 2«(12 - 1) P" + I = s P" , u"" say. 

Under the hypothesis of the model, as a function of p", , i. is of the form 
Ap"/(Bp,,, + C) with A, B, C > 0. Therefore, i s increases with p" . It also 
increases in u" provided 

or more neatly, 

(12) 

The left side of (12) is a linear quantity in p" and since a l - (12 > 0, the inequality 
holds at p" = ° while, since (1l(a2 - 1) > 0, it holds at p" = 1. It is, therefore, 
true for ° ~ p", ~ 1. 

We have, therefore, proved that if u'" > u,, ' p", ~ Pll' before selection, 
then after selection u'" > U'U and p" > Pll . Thus, after the. general generation 
of mutation selection and recombination, (6) remains true in all subsequent 
generations. But in this case, 

and p", > P1I so that Xl > Yl which is the conclusion we sought. 
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Remark 1. If (11 = (1211 (as is the case in Maynard Smith's model), it is easy 
to see that starting with all AB individuals, so that D(O) = 0, we must have 
DUl = 0 for every subsequent t. Thus, in this case, p~) = p~) and "~I) = "~) 
and the frequencies of the respective types are the same in the asexual and 
sexual cases. This holds true even if the fitnesses of Ab and aB are (111' (13' 

respectively «(12 *" (13) with (11 = a2(13' In this more general multiplicative 
setting, the equality of the sexual and asexual systems was concluded by Maynard 
Smith as an approximation. In fact, it is precisely true. 

Remark 2. Using the same sort of arguments as above, it can be shown that 
if I < a2 < a1 < (1a2 (a submultiplicative case), the sexual system will always 
be advantageous. Indeed, if we begin as before, it is clear that after the first 
selection DII will be negative. Recombination and a subsequent mutation do not 
alter this, nor do succeeding selection events. However, since DII < 0, recombina
tion causes ull to become larger than u., without changing PII • As before, after 
mutation p~m) and u~m) are increasing functions of p", and u., • Since I < all < (11 , 

the same is true of p~') and u~·). The inequalities u'" < UII and p", < PII , which 
hold after the second generation, will persist and the sexual population contains 
more double mutants. 

Remark 3. The construction of the above proof makes it clear that permuting 
the order of the mutation, selection and recombination events will not alter the 
conclusion. Obviously, if, after the first mutation, selection occurs, then recom
bination at the end of the first generation u., > "II while if recombination 
occurs before selection at the end of the first generation, u., = UII . However, as 
we have proved, (6) is true after the second generation. 

5. ANALYSIS OF CASE (c) 

Assume, as in Case (a), that the population is initially all AB. Assume further 
that recombination follows any occurrence of mutation and then selection 
occurs. As in Case (a), y~t) = y~t) for every t. We first prove 

LEMMA 1. Starting with y, = 1 (so that y~t) = yit) for t ~ 1), then after 
any recombination 

(13) 

holds true as long as 1 - y, < h, provided that hand,." are small enough. 

Proof. After the first recombination, 

yJYall = 1/(1 - ,.,,)2 < 4 < A. 

EVOLUTIONARY BFPI!CT OF RECOMBINATION 9S 

We proceed by induction. Assume that (13) holds after a given recombination 
event. Then with the prime denoting values after selection, 

where T = (11Y1 + 2(12Y2 + y, = I - 2(1 - (2) Y2 + (a1 - I)Y1 . In view of 
the induction hypothesis Y1 = 0(Y22) with Y2 < h, so that for h small enough, 
we have T < 1. Then, we have 

(14) 

Suppose now that (1 - y,) < h and consider Y2 following mutation and 
recombination: 

Y2' = (1 - "")(Y2 + f.Ly,) + r(1 - ,.,,)2(Y1Y' - Y2B) 

> (1 - f.L)Y2 + f.L(I - f.L)Y, - Y211 

= f.L(I - ,.,,)y, + Y2(1 - f.L - Y2) 

> f.L(1 - f.L)Y, > (1 - f.L)(1 - h)f.L, 

if h is small enough. According to the induction hypothesis, Y1 = 0(Y22) and 
Jill < h so that the mean fitness of the population after selection is less than one. 
Thus, after selection, 

YB > a2(1 - f.L)(I - h)f.L = [(1 + 20.:)/2] f.L(1 - f.L)(I - h), (15) 

where 0.: =;: (12 - t > 0 by hypothesis; 0.: is, also, independent of,." and h. We 
make use of (15) to show that a mutation event cannot increase Y1/Y22 by more 
than 4. To do this, we must show 

(16) 

Since the left side of (16) decreases iny, , we need only show 

or, equivalently, 

(17) 

Suppose that,." and h are so small that (1 - ,.,,)3(1 - h) > (1 + 0.:)/(1 + 20.:), 
say,.", h < 0.:14(1 + 20.:). Then from (15), we have 

2Y2(1 - ,.,,)1 > (1 + 20.:)(1 - ,.,,)8(1 - h),." > (1 + 0.:),.". 
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so that 

2Y2[2Y2(I - ,.,,)2 -,.,,] > 2Y2[(I + a.),." - ,.,,] = 2JUX.Y2 • 

But for h small enough, since Y2 < h, Yl = 0(Y22), it is clear that Yl < a..Y 
w~ 2 

2,."a..Y2 > 2""Yl > (2 -"")/-'Yl 

which completes the proof of the validity of (16). 
Combining (14) and (16), we have shown that after selection and mutation , 

(18) 

From (18), we need, for the proof of the lemma, that after a subsequent recom
bination 

But after recombination, 

~ _ (1 - r)Yl + r(Yl + Y2)2 
(Y2')2 - {Y2 + rYl - r(Yl + Y2)2}2 

= (1 - r) Yl + rY22 + O( 2) 
Y22 Y2 . 

< (1 - r) u~ A + 4(1 - r) + r + 0(Y22) 
U2 

< A - [1 - (1 - r) ~12 ] A + 4 - 3r + 0(Y22) 

[by (18)] 

1 4u 2 
< A - -2 [u22 - (I - r)uJ 2 + 4 (by definition of A) 

U2 u2
2 - (I - r)u1 

=A. 

This completes the proof of Lemma 1. 

Remark. From the proof of Lemma 1 we can see that if h is small enough 
and 1 - X4 < h, then after mutationYl ,;:;; [(ul/u2

2)A + 4]Y22 sothatYl = 0(Y22). 

LEMMA 2. There is a 8 with ° < 8 < h such that if, after mutation 1 - Y < 8 
with Yl ,;:;; [(u1/u22) A + 4]Y22, then 1 - yitl < 8, subsequently, as lon~ as 
ylt-11 ,;:;; [(u1/u22)A + 4](y~t-ll)2 and /-' is small enough. 

Proof· Again, the proof is by induction; after recombination and selection , 

1 - y,' = 2Y2' + Yl' = 2Yl' + 0(Y22) 

2u2[Y2 + ry1 :; r(Yl + Y2)2] + 0(Y22), (19) 

I , 
! 
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where T is the mean fitness after recombination and selection. Clearly, since 
U2 < 1, for 8 small enough, 

so that lIT < 1 + 28. Then 1 - y,' < 2u2Y2 + 0(82) < 1 - Y4 . This means 
that for 8 small enough 1 - Y4 ,;:;; 8 after mutation, and (18) ensures that 
following recombination and selection y,' > Y4 . 

Now, for any € such that ° < € < 8, the set 

is a compact set over which Y4' - y, (here, y,' is Y4 after recombination and 
selection) is a continuous positive function. Thus, there is a 8 = 8(€, 8) > Osuch 
that on S, Y4' - Y4 ~ 8. 

Mter a subsequent mutation, 

so that if /-' < t min(8, 8 - E), we have on S 'after recombination selection 
and mutation 

in other words, 1 - Y4' ,;:;; 8. On the other hand, if I - y, < €, then after 
recombination selection and mutationy,' -Y, > -2/-,so that I-Y4' < € + 2/-, < 8. 
In any event, 1 - Y4 ,;:;; 8 andYl < AY22 imply 1 - Y4' < 8. 

Now, after the first recombination event (13) holds, and for sufficiently small 
/-" we have 1 - y, < 8. This means that (13) remains true by Lemma 1 as long 
as 1 - y, < 8, and 1 - y, < 8 remains true by Lemma 2 as long as Yl < AY22. 
Hence, both inequalities subsequently hold. This completes the proof of Case (c). 

Remark 1. Since the point (0,0,0, 1) is inherently unstable in the presence 
of mutation, the result of Case (c) would imply, if convergence of the recursion 
system is assumed, that a stable equilibrium exists close to the Y4 = 1 corner, 
i.e., in S. S is a region of stability in the sense that once the population enters 
the interior of G it cannot escape. 

Remark 2. The sexual population remains trapped in S under the conditions 
of the model, while it is obvious that in the absence of recombination the 
population would fix on the advantageous double mutant. Thus, in an 
evolutionary sense, the effect of recombination is not favorable. 

Remark 3. In Case (e), the assumption u22 > (1 - r)u1 is precisely that 
needed to ensure limiting quasilinkage equilibrium in a deterministic model 
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without mutation [Feldman and Crow (1970)]. However, recent calculations 
made by Professor S. Karlin indicate that this condition is not the best 
possible. 

6. DISCUSSION 

Our primary aim in this work has been to check rigorously whether the 
commonly held view that the main advantage of recombination is to enable 
favorable cooperative double mutants to appear faster and in higher frequency is a 
valid one. Our results demonstrate that for a deterministic random mating 
population with constant fitnesses, exactly the opposite is true. (a) If the popula
tion is initially all AB and the fitness of the double mutant ab is greater than 
the product of the fitnesses of the favorable single mutants, then an asexual 
population will always contain more double mutants than the corresponding 
population with recombination. (b) The same result is true if there is another 
type of gene interaction; namely, if the single mutants are deleterious (but not 
extremely so) and the double mutant is favorable (but not extremely so). 

If two mutations are considered to be cooperative when the double mutant is 
fitter than the product of the fitnesses of the two single mutants, then these two 
cases cover almost all possibilities. 

One can see the first result intuitively from the fact that in the case with 
recombination, starting with all AB, after selection the linkage disequilibrium 
becomes positive. From this point on, the loss of double mutants by recombina
tion with the original type is the key factor in the difference between this and the 
asexual population in which no such loss occurs. 

The result (b) is perhaps more interesting. The limitations we have imposed 
on (]l and (]2' the fitnesses of the double and single mutants, respectively, are 
not at all stringent: (]2 > t and (]l(l - r) < (]22 < 1. The latter of these two 
conditions is precisely the condition under which, as fixation in AB occurs in 
the absence of mutation, limiting quasilinkage equilibrium is approached 
(Feldman and Crow (1970». As pointed out by Crow and Kimura, this also 
entails, when mutation is absent, the existence of an unstable equilibrium 
between the two stable fixations in AB and abo It is a priori by no means clear 
what the effect of a steady flux of mutation will be in this case. We have shown 
that the way in which recombination stops the progress of the double mutant in 
this case is not through the original unstable adaptive valley, but a new mutation 
selection balance with the double mutant in low frequency. (Presumably, there 
exists another unstable equilibrium with higher frequencies of the 
mutants.) 

Heuristically, the validity of result (b) can be seen through the following three 
stages of reasoning. 

.. 

EVOLUTIONARY EFFEcT OF RECOMBINATION 99 

(1) As long as the frequencies of the new genes are low, which they will be 
initially, the frequency of the double mutant is of the order of the square of the 
single mutant frequencies provided these single mutants are not too deleterious. 

(2) As long as most of the new genes are in the form of disadvantageous 
single mutants, selection favors the original genotype. 

(3) As long as mutation is rare, the mutation pressure is insufficient to 
push the frequencies outside the small region in which our arguments are valid. 

The first part of our proof shows, in particular, that our argument is valid 
when we make the assumption made by Bodmer (1970) and others that the 
double mutant frequency may be negledted in the. beginning. In fact, the initial 
frequency vector (0, €, €, I - 2€) will be in the trap region for € small enough, 
so that with a steady flux of mutation the frequencies of the new mutants will 

remain very low. 
The requirement that the single mutants be not too deleterious may seem 

strange at first glance. However, it seems plausible that if these single mutants 
were, say, nearly lethal, then with or without recombination the frequency 
vector would be pushed toward the AB - ab edge of the frequency tetrahedron. 
From here, selection in favor of ab may pull the population into .the state of 
fixatiQn in abo Even in this case, though, since D becomes positive, the rate of 
evolution with recombination will be slower in the same way as in Case (a). 

In spite of our results, recombination is ubiquitous in nature and it would be 
difficult to believe that it does not possess some crucial evolutionary advantage. 
In fact, our results are true under very restrictive biological conditions. We have 
considered a very large random mating population in an unchanging environ
ment. So far we do not have a clear picture of what happens in-small populations, 
although the studies by Crow and Kimura (1965), Bodmer (1970) and Karlin 
and McGregor (unpublished) indicate that in this case recombination will hasten 
the appearance of the first double mutant. But the subsequent evolution of the 
population under the influence of drift, selection and recombination is quite 
unknown, so that the significance of the first double mutant is questionable. 
Indeed, if there is no selection and the population is small, Karlin and McGregor 
(unpublished) have shown that the expected time until the whole population 
consists of double mutants is an increasing function of the recombination fraction. 

We do know, however, that modification of the mating system, in particular 
through the evolution of incompatibility systems, can be advantageous. These 
could have been the precursors of sexual systems with the advantage conferred 
not necessarily by recombination, but possibly by genetic incompatibility itself. 

The asexual population, as we have shown, fixes on the double mutant 
faster. Eventually, however, the disadvantage· of recombination in slowing the 
progress of the double mutant may become an advantage in the case of a changing 
environment. Rather than hastening the fixation in the double mutant, the 
advantage of recombination may be in prolonging the polymorphic state. 
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These speculations are a few of many that can be made to account for our 
results. We feel that our results need explanation and that some of the more 
interesting questions remain to be answered. For example, it is not clear from 
our work or the work of others whether recombination will increase the speed 
with which a sizable fraction, say 50 %, of a small population becomes double 
mutants. New and deeper thinking is needed on such problems as this and the 
general question of the advantage of recombination and sex. 
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